

9754 54 ST SE Calgary, AB—T2C 5J6 Phone: 403-252-5577 Fax: 403-252-5556 www.icewestern.com

HTDM 91+ OMEGA SERIES

DESIGN FEATURES

HEATING ONLY

- Drum & Tube Heat Exchanger.
- 409 Stainless Steel 14 Gauge Heat Exchanger Material.
- Proprietary Tube Placement/Arrangement.
- Omega Air Pattern.
- Up To 60:1 Turndown

HEAT/COOL

- High Efficient & Durable Digital Scroll D.X. Cooling eliminates the need for Hot Gas Bypass.
- 10:1 Turndown on Single Stage Compressors and 20:1 Turndown for Tandem Compressors.
- VFD Controlled Condenser Fan (No Fan Cycling).

ICE WESTERN BELIEVES YOU DESERVE QUALITY AND SERVICE

QUALITY

ICE is committed to providing quality through every step of the operation. Every product undergoes testing and quality inspection to ensure the highest standards are met. ICE employees take great pride as manufacturers of HVAC units.

SERVICE

ICE provides qualified staff that can assist in start-up service and troubleshooting.

PRICE

ICE offers some of the best pricing in the HVAC industry. ICE can match or surpass any competitor's unit capabilities and quality commitments as well as meet or beat their delivery times.

CUSTOM UNITS

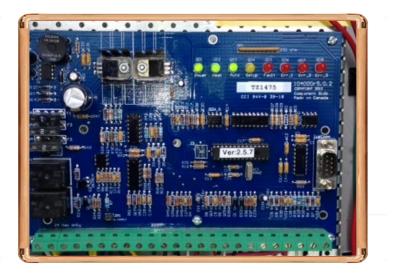
ICE provides custom built units to meet customer specifications and exceed customer expectations. No job is too big or too difficult.

All models are approved according to the Standard for Gas Unit Heaters, Gas Packaged Heaters, Gas Utility Heaters, and Gas fired duct furnaces ANSI Z83.8/CSA 2.6 Issued 2013/04/01

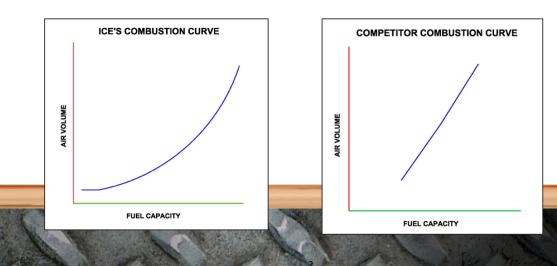
All models are approved according to the Standard for Gas-Fired Appliances for Use at High Altitudes CGA 2.17 Issue: 1991/01/01

9765 54 ST SE Calgary, AB T2C 5J6 Phone: 403-252-5577 Fax: 403-252-5556 www.icewestern.com

Email:


Sales and Engineering: Jim Clancy, Jim.C@icewestern.com

THE REVOLUTIONARY ICECON III


For the past 20 years the ICECON III board capability has allowed ICE to create near perfect combustion throughout the operating range of the heat exchanger. Because of this advanced technology ICE has become very successful in producing efficient and high quality heat exchangers and burners.

ICECON III

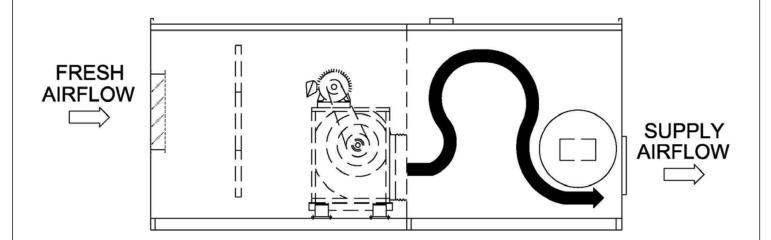
- Heat Modes: Factory set discharge temperature
- Remote Temperature Selector (RTS)
- External modulation control
- Signal: 4-10mA, 0-10 VDC, compatible with Building Management Systems (BMS)
- Error signal indication:
 - o High limit
 - Low limit
 - o Air Proving
 - o Flame Failure
 - Gas Valve
- Options:
 - Space Over-ride
 - o Low Limit
 - o System Pre-heat
 - Standby
 - o Fan Standby

The ICECON III board comes with 6 factory presets within the combustion curve. From these 6 presets a microprocessor produces an infinite number of points to precisely create the combustion curve. The ICECON III can be precisely programmed for different elevations to ensure the highest quality rate of combustion. To acquire this near perfect combustion, the ICECON board sends signals to a Triac solid state relay which controls the rpm of the combustion motor and optimizes the gas ball valve position to allow for combustion at any set point desired. The combustion fan information and gas valve position feedback is sent back to the ICECON III via a tac sensor for constant interlock of both variables. This technology produces quiet combustion and smooth modulation changes between low fire and high fire to ensure greater efficiency, greater control and impressive turndown ratios that cannot be matched by competitors.

CONTENTS

THE ICECON III BOARD	1
CONTENTS	2
DESIGN FEATURES	4
STANDARD FEATURES	5
OPTIONAL FEATURES	5
ADDITIONAL OPTIONS	5
COMPANY PROFILE	6
PERFORMANCE SPECIFICATIONS	7
AMPERAGE SPECIFICATIONS	7
WEIGHTS (IN POUNDS)	8
HORIZONTAL UNITS	8
COMPONENTS	8
EFFICIENCIES AND TURNDOWNS	9
STATIC PRESSURE DROP(S) DUE TO ACCESSORIES	9
STANDARD FILTER SECTION SUMMARY	9
HTDM 91 PLUS PERFORMANCE SPECIFICATIONS	10
COOLING PERFORMANCE DATA	12
HTDM 91 PLUS SERIES	13
STANDARD UNIT c/w FLAT FILTER	13
c/w FLAT FILTER & MIX BOX	14
c/w FLAT FILTER, MIX BOX, HIGH EFFICIENCY FILTER PLENUM & HORIZONTAL DISCHARGE	15
c/w FLAT FILTER, MIX BOX, HIGH EFFICIENCY FILTER PLENUM & BOTTOM DISCHARGE	16
c/w FLAT FILTER, COIL & MIX BOX	17
c/w FLAT FILTER, COIL PLENUM & HORIZONTAL DISCHARGE	18
c/w FLAT FILTER, COIL PLENUM & BOTTOM DISCHARGE	19
c/w FLAT FILTER, MIX BOX, COIL PLENUM & HORIZONTAL DISCHARGE	20
c/w FLAT FILTER, MIX BOX, COIL PLENUM & BOTTOM DISCHARGE	21
c/w FLAT FILTER & MIX BOX WITH RELIEF FA (HTDM 200)	22
c/w FLAT FILTER & MIX BOX WITH RELIEF FA, (HTDM 400-3000)	23
c/w FLAT FILTER,MIX BOX WITH RELIEF FA, COIL & RETURN BLOWER SECTION	24

HTDM 91 PLUS DX SERIES
c/w FLAT FILTER, DX COIL, MIX BOX HORIZONTAL DISCHARGE & CONDENSER
c/w FLAT FILTER, DX COIL, MIX BOX, BOTTOM DISCHARGE & CONDENSER26
c/w FLAT FILTER, DX COIL PLENUM HORIZONTAL DISCHARGE & CONDENSER27
c/w FLAT FILTER, DX COIL PLENUM, BOTTOM DISCHARGE & CONDENSER
c/w FLAT FILTER, DX COIL, MIX BOX WITH RELIEF FA & CONDENSER
c/w FLAT FILTER, DX COIL, MIX BOX WITH RELIEF FA, RETURN BLOWER SECTION & CONDENSER 30
CURB DETAIL DIMENSIONS
INLET HOOD DIMENSIONS
HTDM 91 PLUS TYPICAL SPECIFICATIONS
TYPE AND DESCRIPTION
CASING
BLOWER/MOTOR SECTION
HEAT EXCHANGER
HEATING CONTROLS
COOLING CONTROLS
ELECTRICAL CONTROL EQUIPMENT
DAMPERS & FILTER SECTION
REMOTE CONTROL PANELS
EVAPORATOR COILS
CONDENSER COILS
COMPRESSORS
CONDENSER FANS
ICE WESTERN'S DX COOLING MODULATION
CUSTOM WIRING OPTIONS


DESIGN FEATURES:

HEATING ONLY:

- DRUM & TUBE HEAT EXCHANGER
- 409 STAINLESS STEEL 14 GAUGE HEAT EXCHANGER MATERIAL
- PROPRIETARY TUBE PLACEMENT/ARRANGEMENT
- OMEGA AIR PATTERN
- INTERNAL TURBULATORS INCREASE HEAT TRANSFER

HEAT/COOL:

- HIGH EFFICIENT & DURABLE DIGITAL SCROLL D.X. COOLING WHICH ELIMINATES THE NEED FOR HOT- GAS BYPASS
- 10:1 TURNDOWN ON SINGLE STAGE COMPRESSORS AND 20:1 TURNDOWN FOR TANDEM COMPRESSORS
- VFD CONTROLLED CONDENSER FAN (NO FAN CYCLING)
- DIGITAL SUPERHEAT CONTROLLER
- ELECTRONIC EXPANSION VALVE

OMEGA DESIGN

THE OMEGA HEAT EXCHANGER DESIGN PROVIDES A REVOLUTIONARY AIR PATTERNING OVER ALL THE CRITICALLY ESSENTIAL COMPONENTS OF THE HEAT EXCHANGER. THIS CONTINUAL "SCRUBBING" OF THE HEAT EXCHANGER DRUM & TUBES ALLOWS FOR THE HIGHEST HEAT TRANSFER POSSIBLE.

THE <u>OMEGA FLOW</u> OF THE SUPPLY AIR HAS BEEN SHOWN TO ELIMINATE "HOT SPOT" AREAS OF THE HEAT EXCHANGER, ENSURING LONG HEAT EXCHANGER LIFE AND MAXIMUM HEAT TRANSFER. DURABLE 14 GAUGE 409 STAINLESS STEEL CONSTRUCTION OF THE ENTIRE HEAT EXCHANGER PROVIDES THE BEST MALEABLE EXPANSION AND CONTRACTION PROPERTIES DURING THE COMBUSTION PROCESS, THE HIGHEST POSSIBLE RESISTANCE TO CONDENSATE AND THE GREATEST CONDUCTIVITY OF HEAT TO SUPPLY AIR. THIS ENSURES THE HIGHEST CAPACITIES AND EFFICIENCIES AVAILABLE.

ASSURANCE

- ETL listed Factory wired, piped, and test fired
- CABINET Welded structural or formed channel base frame primed with -
- rust inhibitor Heavy gauge colorbond steel casing with rust-resistant gray
- enamel paint finish One inch thick 1.5# density neoprene coated fiberglass. The
- insulation is glued and pinned, solid liner in the burner section Lifting lugs VENTING
- Type 3/4 venting Condensate neutralizer tank (shipped loose
- **BLOWER/MOTOR**
- AMCA rated forward curve DWDI centrifugal blower Polished steel shaft with rust inhibitor
- Maximum operating speed less than 75% of first critical speed Standard heavy-duty industrial bearings used on unit with blower sizes 20x20 and larger.
- Sealed cartridge bearings provided on units with blower sizes 18x18 and smaller.
- ODP motor, 1800 RPM, T frame, 1.15 service factor mounted on adjustable base
- Drives designed for 150% motor brake horsepower Adjustable V-belt drives used up to and including 5 HP; fixed drives on 7.5 HP and larger

OPTIONAL FEATURES

80/20 MIX BOX

Allows the recirculation of air to occur. This will provide a cost effective way of

space heating Includes V-bank filter rack

WEATHERHOUSING

Control and manifold enclosure FILTER SECTION

V-bank filter section with side access suitable for 2" filters

WINTER FILTER SECTION Located on the discharge side of burner

FILTERS

2" thick permanent, pleated and

throwaway filters; high efficiency filters, various efficiency bag filters and HEPA filters complete with filter gauge and/or indicating light

MOTORIZED INLET & DISCHARGE DAMPER

Parallel blade damper with a twoposition spring return actuator and end switch

ROOF CURB

Prefabricated galvanized roof curb 16" or 24" high; full perimeter available on most units

BLOWERS

Backward inclined, air foil, and plug fans For special fan performance, contact the factory

HEAT RECOVERY

Heat wheels or cutting edge fixed media options

DX PLENUM Coil located in vertical or horizontal airflow complete with drain pan when applicable

COIL PLENUMS

Heating coils- steam, hot water, and glycol Cooling coils- chilled water, DX coil

EVAPORATIVE COOLERS Industrial and commercial HINGED ACCESS DOORS

Optional on filter section, motor section and weatherhousing. Comes with #140 ventlock handles, #310 ventlock handles upgrade available MUSHROOM HOOD

Complete with internal screen for debris

LOUVERED INLET Standard on all units. Manufactured by

ICE and sized for a maximum velocity of 500 FPM to ensure moisture does not enter the unit

4 WAY DISCHARGE HEAD

The adjust able 4 way discharge head provides 4 equal quantities of air in the conditioned space HORIZONTAL DISCHARGE HEAD

180 deg. vertical and horizontal adjustment with 360 deg. of free rotation

- Manifold includes: pilot regulator, gas valve and shutoff valve, safety shutoff valve, pressure regulator or combination modulating and pressure regulating valve, modulating gas valve, main test fire valve, manifold pressure taps CONTROLS ENCLOSURE

Stainless steel primary and secondary heat exchanger and cast

Electronic flame safeguard relay manual reset High and low airflow pressure switches Manual reset high limit Factory wired control panel with numbered terminal strip

- Motor starter with overloads Control circuit transformer, 120 volt Control panel service
- switch
- Circuit breaker
- Terminal connections for exhaust interlock Nationally recognized components, service parts

INTERNAL VIBRATION ISOLATION

Blower and motor isolated on separate frame with R.I.S. or spring c/w canvas connector

EXTERNAL VIBRATION ISOLATION

Floor mounted or suspended isolation SERVICE PLATFORM

Provides access to controls and gas train MOTORS

TEFC and high-efficiency, meeting EEE and CSA standards and 2-speed DISCONNECT SWITCH

Weatherproof enclosure; non-fused or fused

FM GAS TRAIN

Meets Factory Mutual (FM) requirements

IRI GAS TRAIN

Meets Industrial Risk Insurers

requirements HIGH GAS PRESSURE REGULATOR

Required on natural gas with pressure in excess of 14" W.C and LP applications in excess of 11 "W.C.

HIGH/LOW GAS PRESSURE SWITCHES

Manual reset. Gas pressure safety switches which lock out the burner in the event of gas pressure malfunction CONTROL PANELS

NEMA 4 or 12 custom, unit mounted or remote enclosures

ADDITIONAL OPTIONS

Auto low limit freeze protection control with bypass timer

- 10 point electronic circuit analyzer with signal lights Exhaust Interlock Relay
- Proof of Closure Valve
- Inlet Air Controller (burner economizer) Ultra violet flame supervision
- Audible alarm
- Null pressure switch
- Firestat
- Purge timer
- Delay exhaust start
- 115 volt GFI service receptacle

Marine service light with 100 watt bulb, guard, and lighted switch High density insulation

- thick and 4" thick insulation
- Motor and bearings out of airstream Internal liners- 22 gauge solid or perforated
- JIC wiring
- Extended grease lines
- Belt guards
- Checker plate floor
- Walk-in service corridors
- Corrosion resistant two-step acrylic finish Special coatings
- Special construction: aluminum, stainless steel, heavier gauge

For more information, please call 403-252-5577 ext. 222 or visit our website: www.icewestern.com

Intermittent pilot assembly with spark igniter and ignition transformer Solid state flame monitoring system Burner observation port

iron gas manifold

Choice of temperature control systems

HEAT EXCHANGER/MANIFOLD

Fully condensing 91+% efficiency

Manifold pressure for natural gas 7-14" W C. or 1-5 psig Manifold pressure for propane 11"W.C.

COMPANY PROFILE

CREDIBILITY: ICE Western was founded in 1991 as a custom division of ICE MFG LTD in Winnipeg, Manitoba whose roots trace back to 1950.

Throughout the 1950's the Company established a reputation for designing, manufacturing, and installing natural gas conversion burners to replace oil and coal fired furnaces. In 1961, ICE designed and built the first direct fired make-up air unit for the Canadian natural gas heating market.

More innovative new designs followed and the manufacturing of indirect fired units has continued for over 40 years. Constant improvement provides ICE customers with the next generation of heaters and industrial heating/cooling equipment. Many new products and inovations are on the horizon to meet the ever-increasing concern over cost, consumption and environmental impact.

With decades of proven experience, ICE offers a comprehensive product line of direct & indirect fired equipment with or with out integral packaged DX cooling. However, one size does not fit all, which is why ICE Western offers in house, custom design for any configuration of air-handling, heat recovery or process unit. Don't hesitate to contact ICE Western to discuss a solution for your site-specific conditions.

CAPABILITY: Top management at ICE Western has over 25 years of HVAC and Refrigeration experience. With 300 employees, 3 production facilities and 50 + distributors, ICE units can be found on all types of buildings throughout Canada & the U.S.A. ICE Western has been servicing western Canada and the U.S.A. for over 25 years and now boasts a production facility on a 5 acre lot in Calgary with an extra 40,000 sqft. of brand new production space due online by Spring 2016.

With the addition of production at ICE Western, lead times for industrial cooling & heat recovery have dropped from 20 weeks to 12-14 weeks. A large, camera monitored and fence secured yard with ample storage, allows ICE Western to operate as a staging facility to hold units so that shipping can occur at the customer's convenience.

QUALITY: Employees at ICE take great pride as manufacturers of HVAC equipment. ICE is committed to providing quality through every step of the operation with a quality control program that is equivalent to I.S.O. 9001. Every product is fully tested and inspected before delivery to ensure a high quality product. All models are approved according to The Standard for Gas Unit Heaters, Gas Packaged Heaters, Gas Utility Heaters, and Gas Fired Duct Furnaces: ANSI Z83.8/CSA 2.6 Issued 2013/04/01 and The Standard for Gas-Fired Appliances for Use at High Altitudes: CGA 2.17 Issued 1991/01/01.

SERVICE: ICE provides qualified staff that can assist in on-site start-up and troubleshooting.

PRICE: ICE offers some of the best pricing in the HVAC industry, and can match or surpass any competitor's unit capabilities and quality commitments as well as meet or beat their delivery times.

CUSTOM UNITS: ICE provides custom built units to meet specifications and to exceed customer expectations. No job is too big or too difficult. Consult the in house design team for your custom needs.

PERFORMANCE SPECIFICATIONS

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		1,532	110
HTDM 200 200/182 91% EFF OMEGA	1,685	100	
	200/182	1,872	90
		2,106	80
		2,407	70
		2,809	60
		3,370	50

MODEL1	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		11,490	110
	HTDM 1500 1500/1365 91% EFF	12,639	100
		14,043	90
150		15,799	80
OMEGA		18,056	70
OMEGA		21,065	60
		25,278	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		3,064	110
HTDM 400 400/364		3,370	100
	400	3,745	90
		4,213	80
		4,815	70
OMEGA		5,617	60
		6,741	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		15,320	110
HTDM 2000 91% EFF 2000/1820	16,852	100	
		18,724	90
	2000/1820	21,065	80
OMEGA		24,074	70
ONLOA		28,086	60
		33,704	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		4,596	110
HTDM 600 600/546 91% EFF OMEGA	5,056	100	
	600/546	5,617	90
		6,319	80
		7,222	70
		8,462	60
		10,111	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		19,150	110
HTDM 2500 2500/2275 91% EFF	21,065	100	
		23,405	90
	2500/2275	26,331	80
	OMEGA	30,093	70
OMEGA		35,108	60
		42,130	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		7,660	110
HTDM	8,426	100	
	1000 91% EFF 1000/910	9,362	90
		10,532	80
OMEGA		12,037	70
OWIEGA		14,043	60
		16,852	50

MODEL	INPUT/OUT PUT MBH	AIR CAPACITY CFM	TEMPERATURE RISE (Deg-F)
		22,980	110
HTDM 3000 31% FFF 3000/2730		25278	100
		28,086	90
		31,957	80
		36,111	70
OWEGA		42,130	60
		50,556	50

AMPERAGE SPECIFICATIONS

Due to the many variables involved, please consult ICE Western for an MCA based on your specific requirements.

WEIGHTS (IN POUNDS)

HORIZONTAL UNITS

	HTDM 91+ 200	HTDM 91+ 400	HTDM 91+ 600	HTDM 91+ 1000
Basic Unit: c/w Blower, Filter & Heat Exchanger	3,115	3,816	4,714	6,483
c/w Return Air and Mixbox	3,212	3,973	4,838	6,727
c/w Mixbox & Coil Section	3,834	4,394	5,279	7,333
c/w Mixbox & High Eff. Filter Plenum	3,572	4,225	5,166	7,110
C/W Mixbox With Relief	3,751	4,226	5,283	6,970
c/w Mixbox With Relief & Return Air Blower	4,113	4,736	5,641	7,971
C/W Coil Plenum	3,460	4,378	5,341	7,213
c/w Packaged DX Cooling & Mixbox	4,143	4,976	5,897	8,241

	HTDM 91+ 1500	HTDM 91+2000	HTDM 91+ 2500	HTDM 91+ 3000
Basic Unit: c/w Blower, Filter & Heat Exchanger	7,539	9,593	12,498	13,683
c/w Return Air and Mixbox	7,804	9,785	12,806	14,130
c/w Mixbox & Coil Section	8,486	10,434	13,605	15,321
c/w Mixbox & High Eff. Filter Section	8,221	10,087	13,290	14,647
C/W Mixbox With Relief	8,069	9,977	13,114	14,341
c/w Mixbox With Relief & Return Air Blower	9,147	10,898	14,418	15,702
c/w Coil Plenum	8,476	10,427	12,960	14,868
c/w Packaged DX Cooling & Mixbox	9,487	11,831	15,167	16,836

COMPONENTS

	HTDM 91+ 200	HTDM 91+ 400	HTDM 91+ 600	HTDM 91+ 1000
Coil Plenum; Horizontal Discharge	596	766	868	1,172
Coil Plenum; Down Discharge	682	869	1,033	1,338
High Eff. Filter Section; Horizontal Discharge	449	600	688	888
High Eff. Filter Section Down Discharge	557	695	833	1,114
Inlet Hood	46	60	114	151
Relief Fresh Air Section	717	891	992	1231
Relief Fresh Air Blower Section	1,471	1,702	1,867	2,650

	HTDM 91+ 1500	HTDM 91+ 2000	HTDM 91+ 2500	HTDM 91+ 3000
Coil Plenum; Horizontal Discharge	1,319	1,587	1,826	1,918
Coil Plenum; Down Discharge	1,718	1,962	2,232	2,362
High Eff. Filter Section; Horizontal Discharge	1,005	1,180	1,319	1,334
High Eff. Filter Section Down Discharge	1,289	1,486	1,781	1,856
Inlet Hood	192	293	316	320
Relief Fresh Air Section	1,408	1,607	1,771	1,800
Relief Fresh Air Blower Section	2,900	3,215	3,452	3,596

Note:

- For additional components, add the component weight to the basic unit weight

Includes 10% safety factor

For reference only, subject to change without notice

EFFICIENCIES AND TURNDOWNS

MODEL HTDM 91+	EFFICIENCY	TURNDOWNS
200	91%	23:1
400	91%	23:1
600	91%	29:1
1000	91%	50:1
1500	91%	60:1
2000	91%	60:1
2500	91%	60:1
3000	91%	60:1

STATIC PRESSURE DROP(S) DUE TO ACCESSORIES

ACCESSORIES	STATIC PRESSURE DROP (IN INCHES WATER)
Flat and v-Bank Filter Section	0.4
Louvered Inlet Hood	0.1
Evaporative Cooler (Commercial)	0.3
Evaporative Cooler (Industrial)	0.4
Inlet Damper	0.1
DX Plenum & Coil	0.6
80/20 Mixbox w/ Filters	0.7
Horizontal Discharge Head	0.5
High Eff. Filter Section	1.0
Heat Coil	0.2
Fixed Media Heat Recovery	1.0

Note:

Accessory static pressure drops are calculated at maximum CFM loads

STANDARD FILTER SECTION SUMMARY

MODEL HTDM 91+	QUANTITY – SIZE INCHES	TOTAL FILTER FREE AREA ft ²	MAXIMUM AIR FLOW CFM
200	2-16x25x2	5.26	2,780
400	4-16x25x2	11.1	5,550
600	3-16x20x2 3-20x20x2	15	7,500
1000	4-20x25x2 4-20x20x2	25	12,500
1500	12-16x25x2	33.3	16,500
2000	12-24x24x2	48	24,000
2500	16-25x20x2	55.6	27,500
3000	12-25x20x2 8-25x16x2	63.9	32,000

General Filter Performance Notes:

-The standard filter section may contain one of the following three types:

- <u>Replaceable:</u> 2 inch fiberglass media with an average efficiency of 20% at 500 fpm.
- <u>Throwaway</u>: 2 inch pleated media with an average efficiency of 30% at 500 fpm.
- <u>Permanent</u>: 2 inch media with layers of silt and expanded aluminum. The media efficiency averages 20% at 500 fpm. The media can be cleaned using a stream of water.

Note:

- The static pressure drop through the filters is approximately 0.4" W.C. (clean) and approximately 0.8" W.C. (dirty)
- The maximum airflow is calculated so that the velocity across the filters never exceeds 500 fpm
- A V-bank filter section is required on the HTDM 91+ 1000 and 1500 when the temperature rise is less than 70°F

HTDM 91 PLUS PERFORMANCE SPECIFICATIONS

	INPUT/OUT PUT (MBH)	AIR CAPACITY CFM	TEMP. RISE	0.25″ W	/.C.	0.5" W	.C.	0.75″ W	/.C.	1.0" W	.C.	1.5″ W.C.		2.0" W.C.		GAS CONN. INCHES
		CFIVI	deg F	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		1532	110	9x9	0.40	9x9	0.49	9x7	0.76	9x7	0.85	9x7	1.03	9X7	1.21-	
		1685	100	9x9	0.50	9x7	0.94	9x7	1.04	9x7	1.02	9x7	1.22	9x7	1.42	
	202/402	1872	90	9x9	0.63	9x9	0.73	9x7	1.15	9x7	1.26	9x7	1.48	9x7	1.70	1
200	200/182	2106	80	9x9	0.82	9x9	0.92	9x9	1.03	9x9	1.54	12x9	1.33	12x9	1.47	1
		2407	70	10x10	0.85	9x9	1.30	9x9	1.42	9x9	1.54	9x9	1.81	12x9	1.72	
		2809	60	10x10	1.49	10x10	1.65	10x10	1.79	10x10	1.95	12x12	2.19	12x9	2.57	
		3370	50	12x9	1.70	12x9	1.85	12x9	2.01	12x9	2.16	12x12	2.65	12x12	3.30	

	INPUT/OUT PUT (MBH)	CAPACITY	TEMP. RISE	0.25" W	/.C.	0.5″ W	.C.	0.75″ W	/.C.	1.0" W	.C.	1.5″ W	.C.	2.0" W	.C.	GAS CONN. INCHES
		CFM	deg F	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		3064	110	12x12	0.89	12x9	1.25	12x9	1.35	12x9	1.49	10x10	2.21	10x10	2.56	1
		3370	100	12x12	1.08	12x12	1.27	12x9	1.69	12x9	1.80	12x9	2.11	12x9	2.43	
	100/051	3745	90	12x12	1.39	12x12	1.58	12x12	1.89	12x12	2.01	12x12	2.44	18x18	3.03	1
400	400/364	4213	80	12x12	1.82	12x12	2.03	12x12	2.25	12x12	2.60	18x18	2.15	18x18	3.37	
		4815	70	15z15	1.76	15z15	1.99	15z11	2.30	15z11	2.53	18z18	3.17	18z18	3.89	
		5617	60	15z15	2.56	18x13	2.75	18x13	3.03	18x13	3.33	18x18	3.90	18x18	4.07	
		6741	50	18x18	2.61	20x20	3.57	20x20	4.05	18x13	4.48	18x13	5.53	18x18	6.05	

	INPUT/OUT PUT (MBH)		TEMP. RISE	0.25″ W	/.C.	0.5″ W	.C.	0.75″ W	/.C.	1.0" W	.C.	1.5″ W	.C.	2.0" W	.C.	GAS CONN. INCHES
		CFIVI	deg F	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		4596	110	15x15	1.30	15x15	1.55	15x11	1.9	15x11	2.05	12x12	3.17	12x12	3.71	
		5056	100	15x15	1.68	15x15	1.92	15x15	2.14	15x15	2.42	18x18	2.92	18x18	3.65	
		5617	90	15x15	2.12	15x15	2.40	15x15	2.66	15x15	2.91	22x22	3.34	20x15	4.34	
600	600/546	6319	80	18x18	2.10	18x18	2.40	18x18	2.71	20x15	3.30	18x13	4.26	18x13	4.91	1
		7222	70	18x18	2.83	18x18	3.20	18x18	3.53	18x18	3.07	20x15	5.03	20x20	5.87	
		8462	60	18x18	4.13	18x18	4.57	18x18	4.99	18x18	5.39	20x15	6.67	22x15	8.61	
		10111	50	20x18	4.38	20x18	5.03	20x18	5.62	20x18	6.22	20x20	7.71	22x15	8.61	

	INPUT/OUT PUT (MBH)	CAPACITY	TEMP. RISE	0.25″ W	/.C.	0.5″ W.C.		0.75″ W	/.C.	1.0" W	.C.	1.5" W.C.		2.0" W.C.		GAS CONN. INCHES
		CFM	deg F	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		7660	110	2-1x12	2.96	2-1x12	3.36	2-1x12	3.79	2-1x12	4.24	2-15x15	4.90	2-18x18	6.05	
		8426	100	2-1x12	3.66	2-1x12	4.09	2-1x12	4.53	2-1x12	4.91	2-1x12	5.98	2-18x18	6.79	
4000	4000/040	9362	90	2-20x20	3.11	2-22x22	3.44	2-22x22	4.14	2-22x22	4.83	2-18x18	6.07	2-18x18	7.50	1 1/4
1000	1000/910	10532	80	2-20x20	3.54	2-20x20	4.26	2-22x22	4.71	2-22x22	5.48	2-22x22	7.07	2-18x18	8.39	11/4
		12037	70	2-25x25	4.26	2-15x15	6.34	2-15x15	6.89	2-22x22	6.44	2-22x22	8.40	2-22x22	10.66	
		14043	60	2-18x18	6.25	2-18x18	6.89	2-22x22	7.10	2-20x20	8.89	2-20x20	10.73	2-22x22	12.11	
		16852	50	2-18x18	9.54	2-18x18	10.37	2-18x18	11.17	2-18x18	11.93	2-20x20	14.22	2-20x20	16.64	

Note:

- All static values include the blower, burner and casing
- Accessory static values must be added to obtain the total static (see page 9)
- Brake horsepower does NOT include drive losses
- A V-bank filter section is required on HTDM 1000, 1500, 2000 and 3000 with a temperature rise of less than 70°F

Consult ICE Western for:

- Higher air capacities or special applications
- Performance data on higher statics than listed
- Performance data at elevations other than sea level

	INPUT/OUT PUT (MBH)	CAPACITY	TEMP. RISE	0.25″ W	/.C.	0.5″ W	.C.	0.75″ W	/.C.	1.0" W	.C.	1.5″ W.C.		2.0″ W.C.		GAS CONN. INCHES
		CFIVI	deg F	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		11490	110	2-20x20	3.06	2-22x22	3.55	2-20x20	4.79	2-20x20	5.56	2-22x22	6.83	2-22x22	4.27	
		12639	100	2-20x20	3.72	2-20x15	4.99	2-22x22	4.89	2-22x22	5.77	2-22x22	7.58	2-22x22	9.41	1
4500	4500/4005	14043	90	2-20x20	4.50	2-20x20	5.29	2-18x18	6.52	2-18x18	7.17	2-20x20	9.26	2-20x20	11.06	/ .
1500	1500/1365	15799	80	2-20x20	6.07	2-18x18	7.86	2-18x18	8.64	2-18x18	9.36	2-20x20	11.03	2-20x20	13.55	1 1/4
		18056	70	2-20x20	7.89	2-20x20	9.04	2-20x20	10.14	2-20x20	11.13	2-25x25	13.02	2-22x22	14.51	1
		21065	60	2-20x20	11.32	2-20x20	12.48	2-20x20	13.82	2-20x20	15.12	2-20x20	17.56	2-20x20	19.34	
		25278	50	2-22x22	14.08	2-22x22	15.36	2-22x22	16.12	2-22x22	17.95	2-25x25	20.78	2-25x25	24.25	

	INPUT/OUT PUT (MBH)	CAPACITY	TEMP. RISE	0.25″ W	/.C.	0.5″ W	.C.	0.75" W	/.C.	1.0" W	.C.	1.5″ W	.C.	2.0" W	.C.	GAS CONN. INCHES
		CFM	deg F	BLOWER	BHP											
		15320	110	2-20x20	4.36	2-20x20	5.26	2-18x18	7.02	2-18x18	7.77	2-18x18	9.91	2-20x20	11.44	
		16852	100	2-20x20	5.41	2-20x20	6.30	2-18x18	4.30	2-18x18	9.41	2-18x18	11.03	2-22x22	11.57	
2000	2000/1020	18724	90	2-20x20	7.12	2-20x20	8.01	2-20x20	9.05	2-20x20	10.27	2-20x20	12.45	2-20x20	14.23	2
2000	2000/1820	21065	80	2-22x22	7.54	2-20x20	10.72	2-20x20	11.76	2-20x20	12.97	2-20x20	15.64	2-20x20	18.00	~
		24074	70	2-22x22	10.13	2-22x22	11.24	2-20x20	15.60	2-20x20	16.78	2-20x20	19.48	2-20x20	22.55	
		28086	60	2-22x22	15.11	2-22x22	16.44	2-22x22	17.71	2-22x22	19.09	2-22x22	21.82	2-22x22	24.82	
		33704	50	2-25x25	20.06	2-25x25	21.71	2-25x25	23.44	2-25x25	25.16	2-25x25	28.76	2-28x28	33.15	

	INPUT/OUT PUT (MBH)	AIR CAPACITY CFM	TEMP. RISE deg F	0.25″ W	/.C.	0.5″ W	.C.	0.75″ W	/.C.	1.0" W	.C.	1.5″ W.C.		2.0" W.C.		GAS CONN. INCHES
		CFIVI	uegr	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	BLOWER	BHP	
		19150	110	2-22x22	5.52	2-20x20	8.04	2-20x20	9.00	2-20x20	10.18	2-20x20	12.56	2-20x20	14.33	
		21065	100	2-22x22	6.85	2-22x22	7.82	2-20x20	10.98	2-20x20	12.07	2-20x20	14.70	2-20x20	17.19	
2500	2500/2275	23405	90	2-22x22	8.56	2-22x22	9.66	2-22x22	10.73	2-20x20	14.80	2-20x20	17.32	2-20x20	20.35	2
2500	2500/2275	26331	80	2-22x22	11.51	2-22x22	12.78	2-22x22	14.04	2-22x22	20.65	2-22x22	17.91	2-22x22	20.65	2
		30093	70	2-25x25	12.75	2-25x25	14.22	2-25x25	15.66	2-25x25	17.19	2-25x25	20.37	2-25x25	24.00	
		35108	60	2-25x25	17.51	2-25x25	19.25	2-25x25	20.93	2-25x25	22.66	2-25x25	26.09	2-25x25	29.77	
		42130	50	2-28x28	21.34	2-28x28	23.39	2-28x28	26.27	2-28x28	28.40	2-28x28	32.75	2-28x28	37.42	

	INPUT/OUT PUT (MBH)	AIR CAPACITY CFM	TEMP. RISE	0.25″ W	/.C.	0.5″ W	.C.	0.75" W	/.C.	1.0" W	.C.	1.5″ W	.C.	2.0" W	.C.	GAS CONN. INCHES
			deg F	BLOWER	BHP											
		22980	110	2-22x22	7.36	2-22x22	8.48	2-22x22	9.56	2-20x20	13.42	2-20x20	15.72	2-20x20	18.66	
		25278	100	2-22x22	9.39	2-22x22	10.64	2-22x22	11.82	2-22x22	13.04	2-22x22	15.51	2-22x22	18.13	
		28086	90	2-22x22	12.06	2-22x22	13.42	2-22x22	14.76	2-22x22	16.14	2-22x22	18.74	2-22x22	21.50	2 1/2
3000	3000/32730	31957	80	2-25x25	12.70	2-25x25	14.19	2-25x25	15.78	2-25x25	17.29	2-25x25	20.53	2-25x25	23.92	21/2
		36111	70	2-25x25	16.94	2-25x25	18.73	2-25x25	20.44	2-25x25	22.20	2-25x25	25.75	2-25x25	29.30	
		42130	60	2-28x28	20.08	2-28x28	22.10	2-28x28	24.24	2-28x28	26.27	2-28x28	30.50	2-28x28	34.99	
		50556	50	2-30x30	26.38	2-30x30	26.17	2-30x30	30.84	2-30x30	33.10	2-30x30	37.90	2-30x30	43.04	

Note:

- All static values include the blower, burner and casing
- Accessory static values must be added to obtain the total static (see page 9)
- Brake horsepower does NOT include drive losses
- A V-bank filter section is required on HTDM 1000, 1500, 2000 and 3000 with a temperature rise of less than 70°F

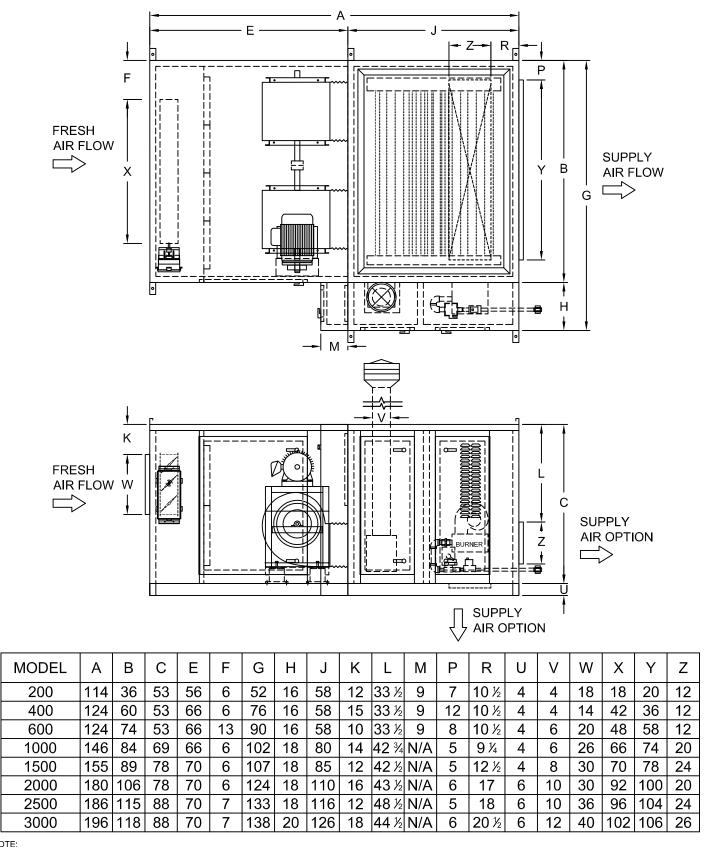
Consult ICE Western for:

- Higher air capacities or special applications
- Performance data on higher statics than listed
- Performance data at elevations other than sea level

COOLING PERFORMANCE DATA

D	X5S		Available	Stages of	Cooling: 1			D	X6S		Available	Stages of	Cooling: 1			DX	7.55		Available	Stages of C	ooling: 1		
	SST	Air Temperature Entering Condenser (°F)						9	ST	Air Te	emperatur	re Entering Condenser (°F)				s	ST	Air	Femperatur	e Entering (Condenser	(°F)	
	(°F)	75	85	95	105	115		(°F)	80	95	100	105	115		(*	F)	80	95	100	105	115	
40	TC CDT	57.8 99.3	55.1 110.0	52.2 120.0	49.2 130.0	46.1 140.0		40	TC CDT	77.4 111	69.8 124	67.3 128	64.7 132	59.6 141		40	TC CDT	97.5 109	88.0 120	84.8 127	81.7 131	75.3 140	
45	TC CDT	63.0 101.0	60.0 111.0	57.0 121.0	53.8 132.0	50.5 142.0		45	TC CDT	84.9 114	77.0 126	74.4 131	71.7 135	66.4 143		45	TC CDT	107.0 111	97.0 124	93.6 129	90.2 133	83.4 142	
50	TC CDT	68.5 102.0	65.3 113.0	62.1 123.0	58.7 133.0	55.2 143.0		50	TC CDT	92.7 116	84.5 129	81.7 133	78.9 138	73.4 146		50	TC CDT	117.0 114	106.0 127	103.0 131	99.2 136	92.0 144	
D	X105	ļ	vailable S	tages of C	ooling: 1,	2		DX10.5S Available Stages of Cooling: 1, 2, 3, 4						DX1	2.55	A	vailable Sta	ges of Cooli	ng: 1, 2, 3,	4			
	SST	Air Te	mperatur	e Entering	Condense	er (°F)			ST	Air Te	emperatur	e Entering	Condense	er (°F)		s	ST	Air	Temperatur	e Entering (Condenser	(°F)	
	(°F)	80	95	100	105	115			°F)	85	95	100	105	115			F)	80	95	100	105	115	
40	TC CDT	119.0 115	107.0 127	102.0 132	98.4 136	90.3 145		40	TC CDT	117.0 115	109.0 124	105.0 128	101.0 133	93.0 142		40	TC CDT	145.0 112	135.0 121	131.0 126	126.0 130	117.0 140	
45	TC CDT	130.0 118	117.0 130	113.0 134	109.0 139	100.0 147		45	TC CDT	129.0 117	120.0 126	116.0 131	111.0 135	103.0 144		45	TC CDT	159.0 114	149.0 123	144.0 127	139.0 132	130.0 141	
50	TC CDT	142.0 121	128.0 133	124.0 137	119.0 141	110.0 150		50	TC CDT	141.0 120	132.0 129	127.0 133	122.0 137	113.0 146		50	TC CDT	174.0 116	164.0 124	159.0 129	153.0 134	141 143.0 143	
							·																
D	DX15S Available Stages of Cooling: 1, 2, 3, 4				D)	20S	,	Available Stages of Cooling: 2, 3					DX	255	/	Available St	ages of Coo	ling: 2, 3, 4					
	SST (°F)	-	-	-	Condense				ST °F)	-	emperatur	-				SST (°F)			Temperatur	-	r		
	TC	80 187.0	95 176.0	100 170.0	105 165.0	115 154.0			r) TC	80 251.0	95 255.0	100 217.0	105 208.0	115 191.0			TC	80 333.0	95 301.0	100 290.0	105 279.0	115 258.0	
40	CDT	117	126	130	135	144		40	CDT	117	129	133	137	146		40	CDT	115	128	133	137	145	
45	TC CDT	204.0 119	192.0 128	186.0 133	180.0 137	168.0 146		45	TC CDT	275.0 121	248.0 133	239.0 137	230.0 141	212.0 149		45	TC CDT	365.0 118	330.0 131	319.0 135	307.0 140	284.0 148	
50	TC CDT	222.0 122	209.0 131	203.0 135	197.0 140	184.0 148		50	TC CDT	299.0 124	271.0 136	262.0 140	252.0 144	232.0 152		50	TC CDT	398.0 121	361.0 134	348.0 138	336.0 142	312.0 151	
D	x30S	A	/ailable St	ages of Co	oling: 2, 3	4		DX40S Available Stages of Cooling: 2, 3, 4						. 4		DX	50T	Available Stages of Cooling: 4, 6, 8					
	SST			-	ng Conder				ST		Temperat	-					ST	Air Temperature Entering Condenser					
	(°F)	80	95	100	105	115			°F)	80	95	100	105	115			F)	85	95	100	105	115	
40	TC CDT	371.0 115	337.0 128	326.0 132	314.0 136	292.0 145		40	TC CDT	503.0 111	461.0 124	447.0 129	433.0 133	405.0 142		40	TC CDT	568.0 116	527.0 125	506.0 130	486.0 135	44.0 144	
45	TC CDT	405.0 117	369.0 130	357.0 135	345.0 139	321.0 147		45	TC CDT	551.0 114	505.0 127	489.0 131	474.0 136	444.0 145		45	TC CDT	627.0 119	583.0 127	561.0 132	540.0 137	496.0 146	
50	TC CDT	440.0 120	402.0 133	390.0 138	377.0 142	351.0 150		50	TC CDT	599.0 116	550.0 129	534.0 134	518.0 138	485.0 147		50	TC CDT	688.0 121	642.0 130	619.0 134	595.0 139	-	
		1								1					I					-9.			
D	X60T	Av	/ailable St	ages of Co	oling: 4, 6	8		D)	(70T	A	vailable St	ages of Co	oling: 4, 6,	, 8		DX	80T	1	Available St	ages of Coo	ling: 4, 6, 8		
	SST (°F)	Air Te 85	Temperature Entering Condenser (°F)		er (°F) 115			ST °F)	Air Te	emperatur 95	e Entering 100	Condense	er (°F) 115			ST F)	Air 85	Temperatur 95	e Entering (100	Condenser 105	(°F) 115		
40	TC	682.0	95 634.0	100 611.0	105 588.0	541.0		40	TC	829.0	778.0	753.0	727.0	677.0		40	TC	954.0	896.0	866.0	838.0	780.0	
40	CDT TC	116 749.0	125 699.0	130 674.0	135 650.0	144 600.0		40	CDT TC	115 910.0	124 854.0	129 827.0	133 800.0	143 745.0		40	CDT TC	117 1047.0	126 984.0	131 953.0	136 922.0	145 860.0	
45 50	CDT TC	118 822.0	127 768.0	132 741.0	136 715.0	146 662.0		45 50	CDT TC	118 994.0	127 935.0	131 905.0	136 876.0	145 817.0		45 50	CDT TC	119 1144.0	128 1077.0	128 1044.0	138 1011.0	147 944.0	
50	CDT	120	130	134	139	148		50	CDT	120	129	133	138	147		50	CDT	122	131	135	140	149	

Nomenclature:


 $\begin{array}{ccc} \text{DX} & \underline{20} & \underline{S} \\ & & & \searrow \\ \text{Nominal} & & \text{S-Single Compressor} \\ \text{Tonnage} & & \text{T-Twin Compressor} \end{array}$

SST -Saturated Suction Temperature (°F)

TC - Gross Cooling Capacity (°F)

CDT - Saturated Discharge Temperature at Compressor (°F)

For capacities larger than or between those indicated or for capacities of twin compressor units less than 50 tons, consult ICE Western. For reference only, subject to change without notice.

1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED

TO MEET YOUR SPECIFIC NEEDS 2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED.

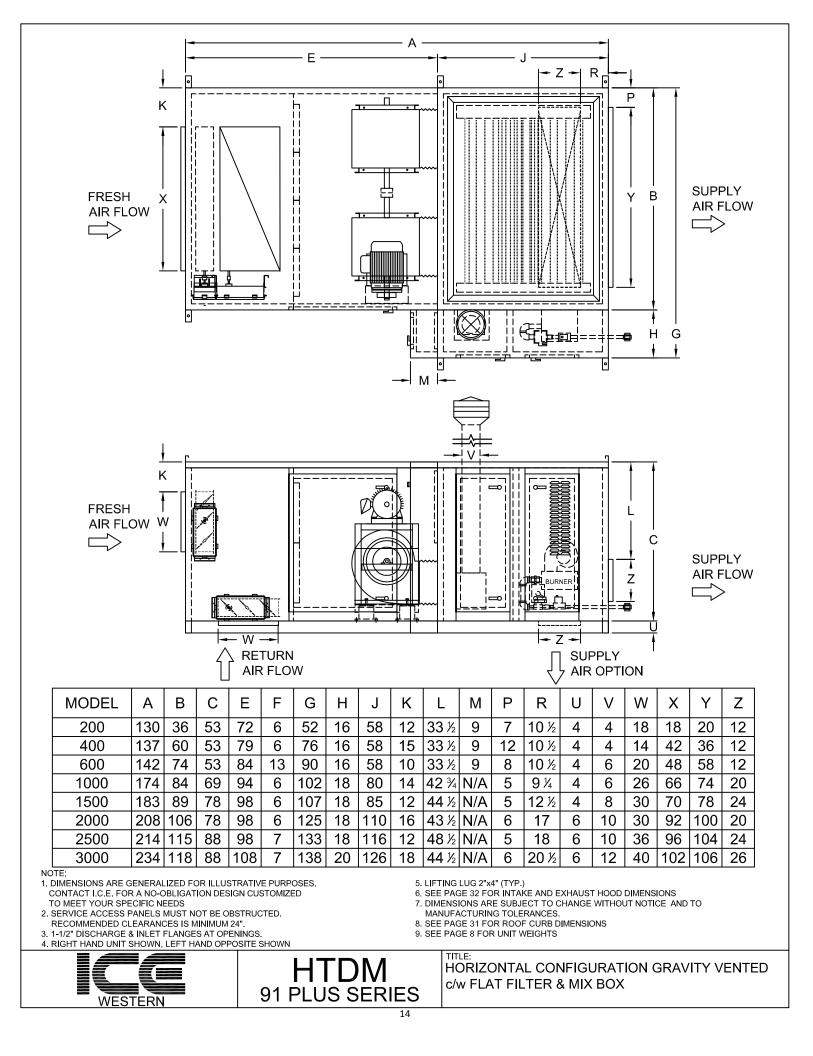
RECOMMENDED CLEARANCES IS MINIMUM 24".

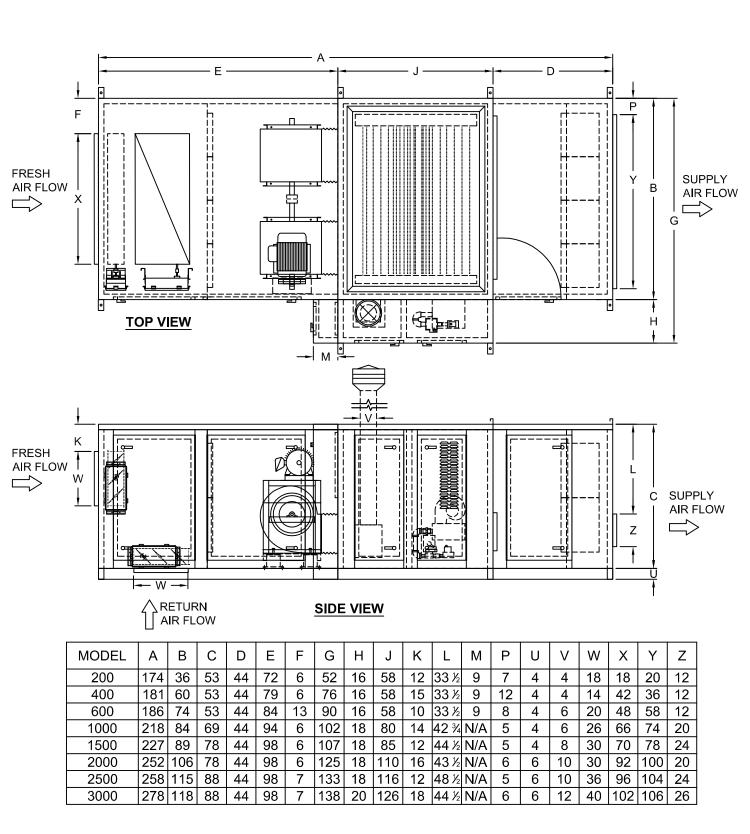
3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.

4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

5. LIFTING LUG 2"x4" (TYP.)

6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS


7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO

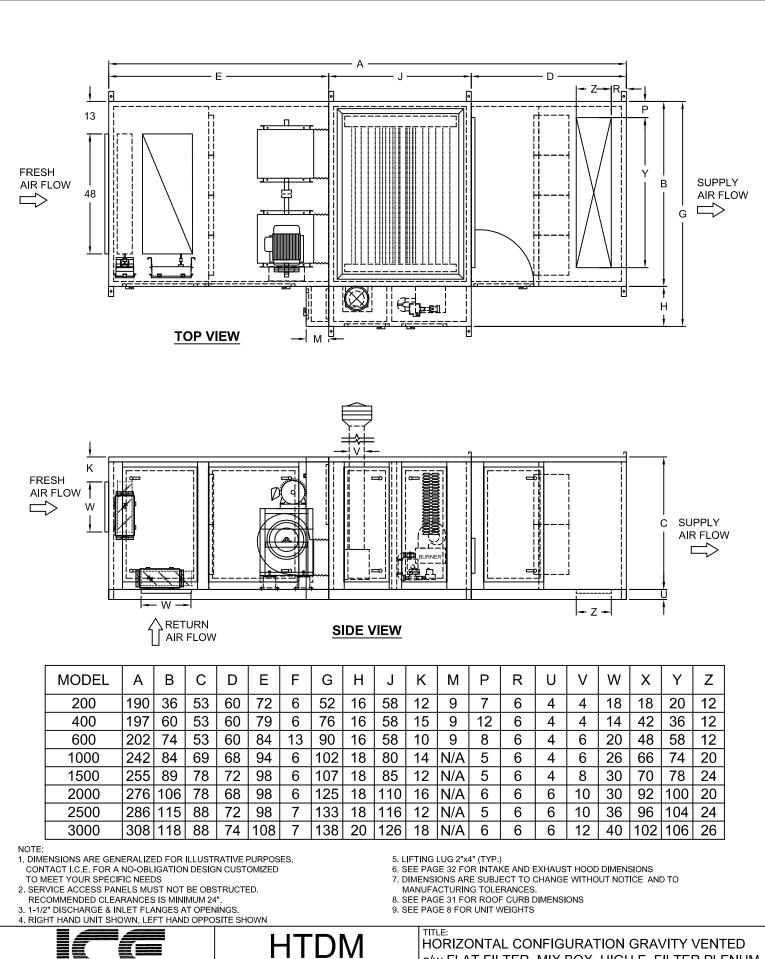

MANUFACTURING TOLERANCES. 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

9. SEE PAGE 8 FOR UNIT WEIGHTS

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER

HTDM

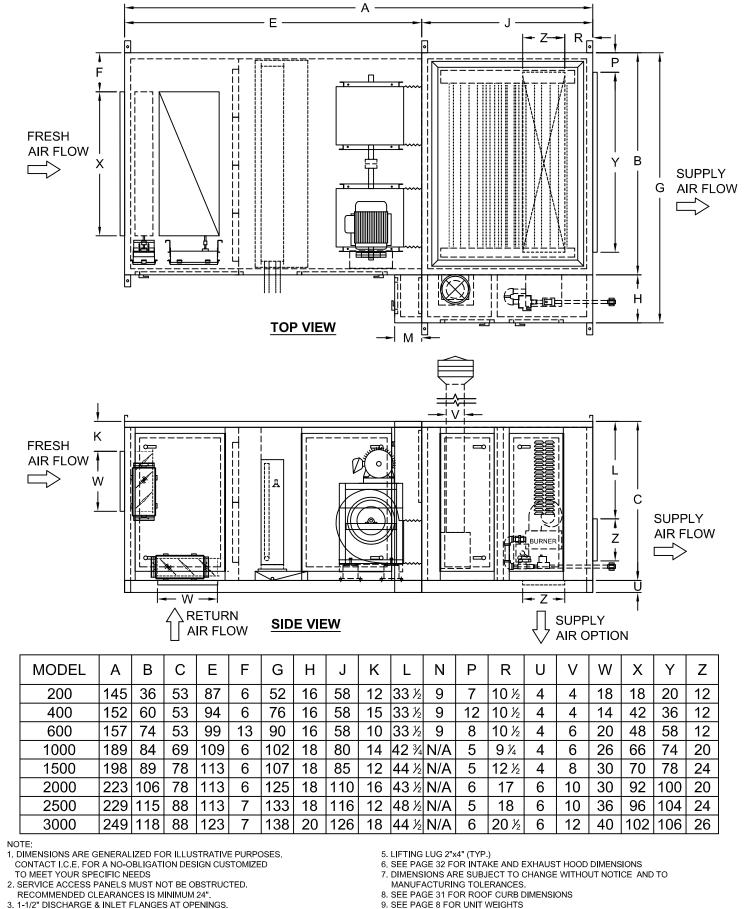
- 1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED
- TO MEET YOUR SPECIFIC NEEDS
- 2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED. RECOMMENDED CLEARANCES IS MINIMUM 24".
- 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
- 4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN



5. LIFTING LUG 2"x4" (TYP.)

- 6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS
- 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO
- MANUFACTURING TOLERANCES. 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS
- 9. SEE PAGE 8 FOR UNIT WEIGHTS

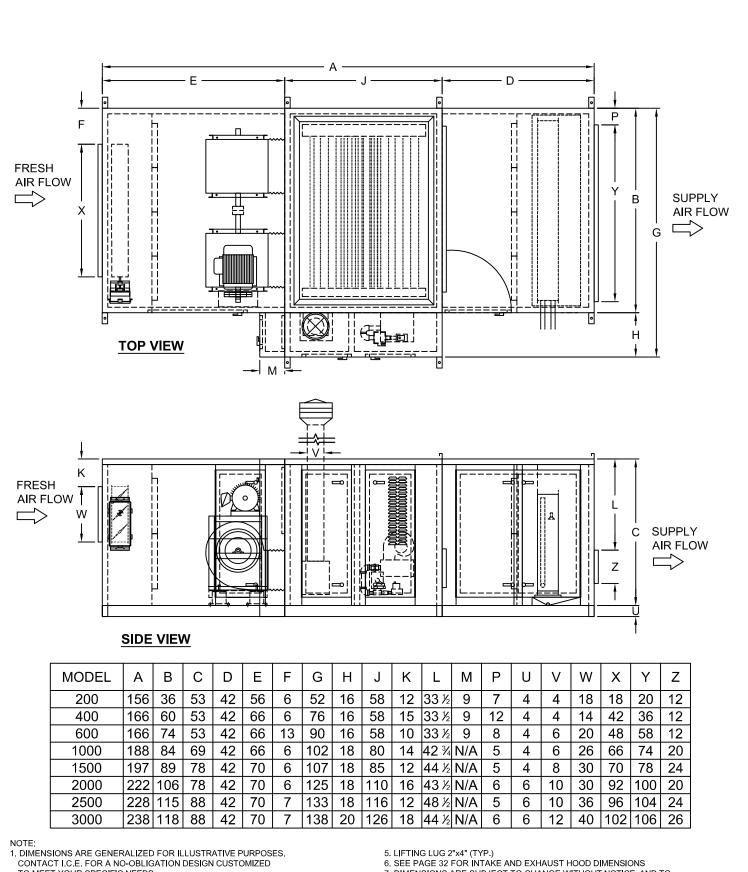
TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, MIX BOX, HIGH E. FILTER PLENUM & HORIZONTAL DISCHARGE


HTDM

91 PLUS SERIES

c/w FLAT FILTER, MIX BOX, HIGH E. FILTER PLENUM & BOTTOM DISCHARGE

WESTERN



I-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
 RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, COIL & MIX BOX

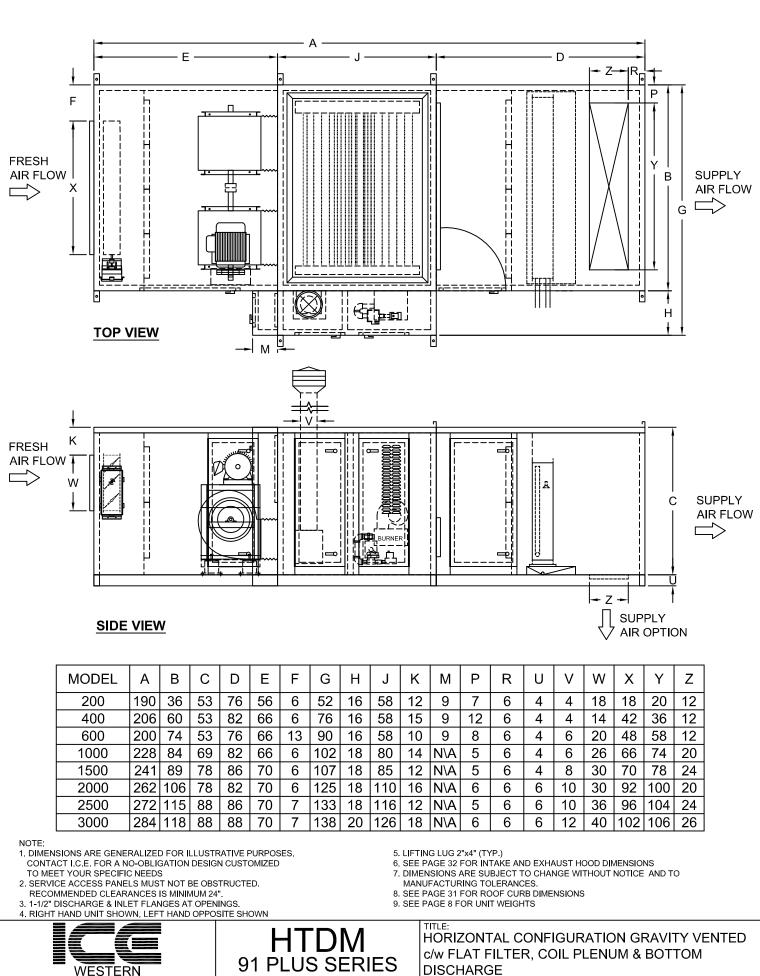
HTDM

TO MEET YOUR SPECIFIC NEEDS

2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED. RECOMMENDED CLEARANCES IS MINIMUM 24".

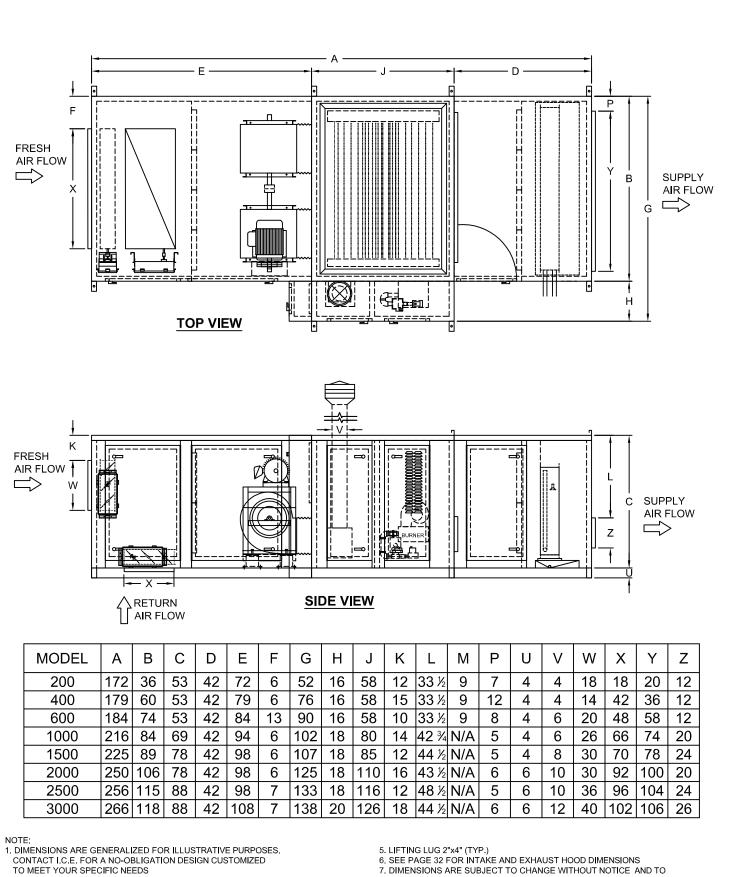
3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.

4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN


7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO

MANUFACTURING TOLERANCES. 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

9. SEE PAGE 8 FOR UNIT WEIGHTS


TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, COIL PLENUM AND HORIZONTAL DISCHARGE

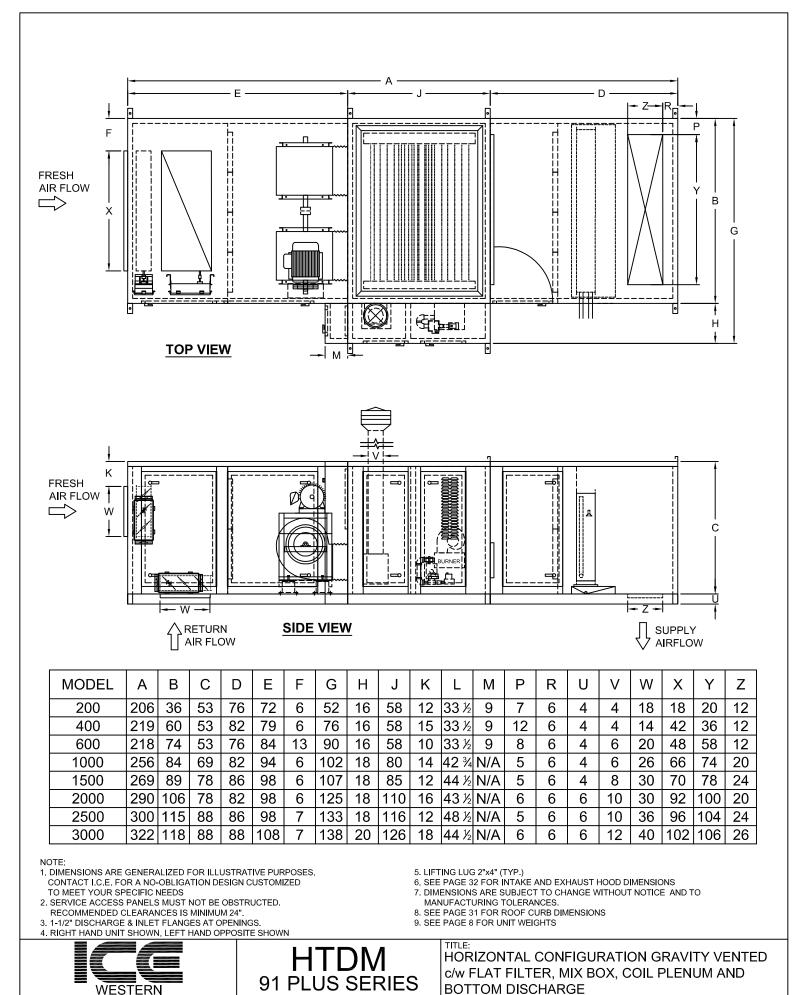
HTDM 91 PLUS SERIES

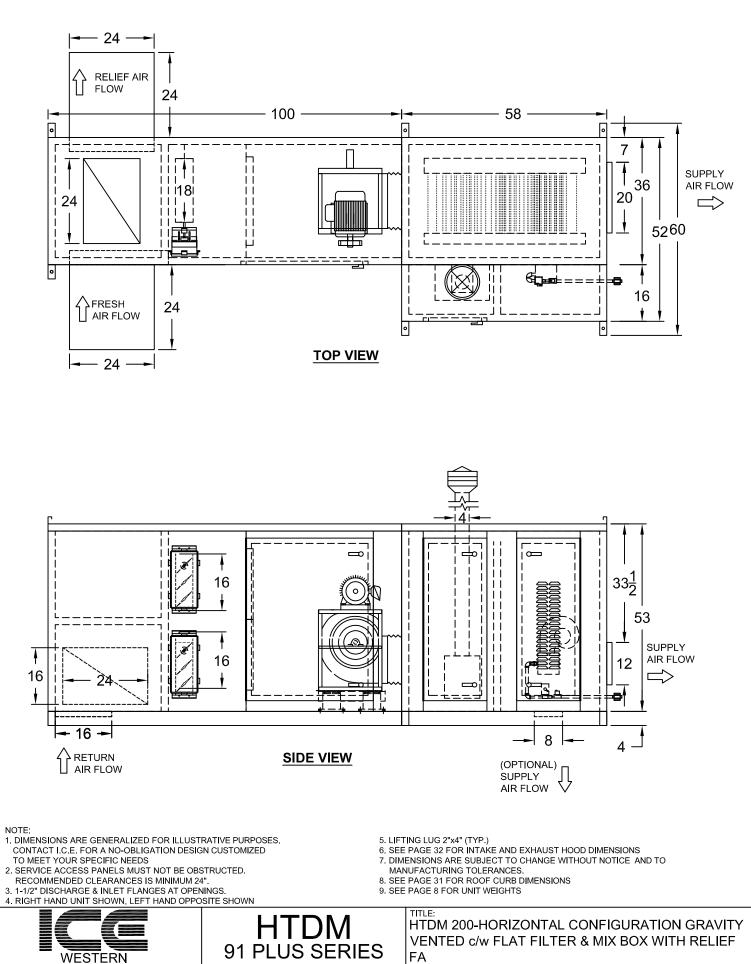
HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, COIL PLENUM & BOTTOM DISCHARGE

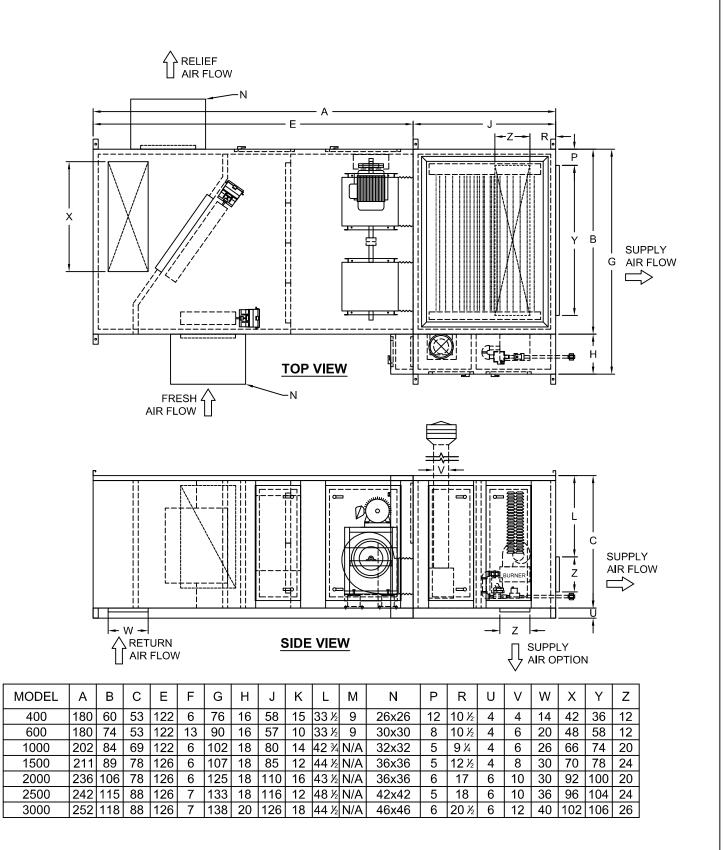
WESTERN

2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED.

RECOMMENDED CLEARANCES IS MINIMUM 24".


- 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
- 4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN




- MANUFACTURING TOLERANCES. 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS
- 9. SEE PAGE 8 FOR UNIT WEIGHTS

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, MIX BOX, COIL PLENUM & HORIZONTAL DISCHARGE

HTDM

1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED

TO MEET YOUR SPECIFIC NEEDS

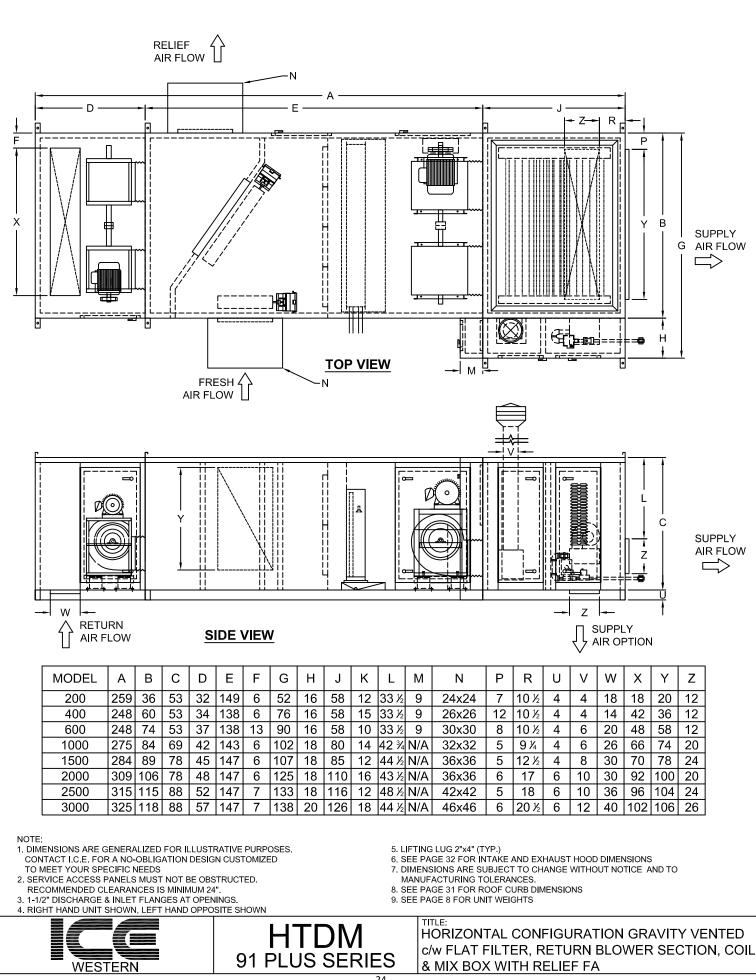
2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED.

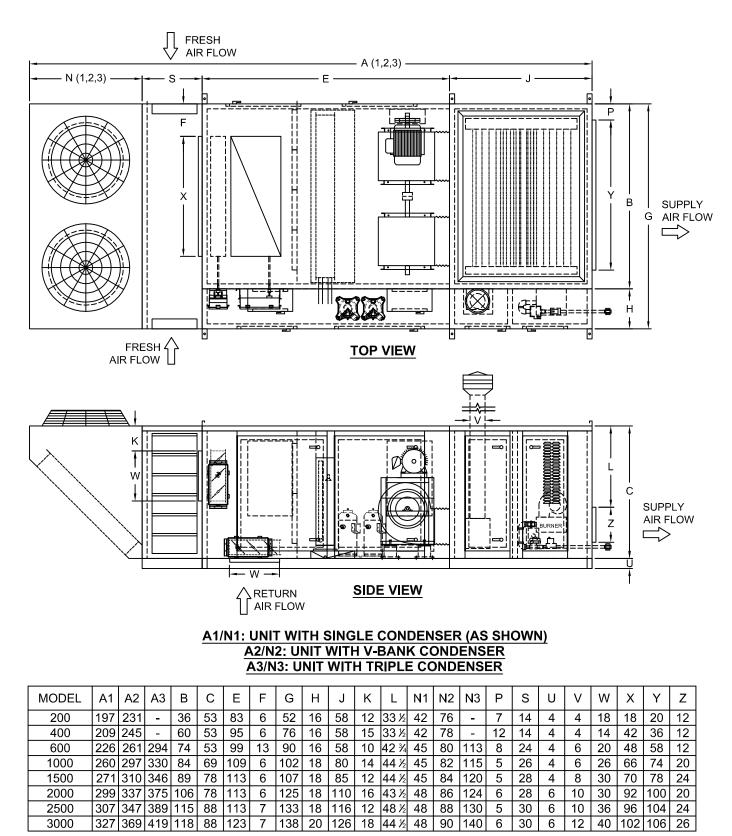
RECOMMENDED CLEARANCES IS MINIMUM 24". 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.

I-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
 RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

5. LIFTING LUG 2"x4" (TYP.)

6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO


MANUFACTURING TOLERANCES.


- 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS
- 9. SEE PAGE 8 FOR UNIT WEIGHTS

9. SEE FAGE 6 FOR UNIT WEIGHTS

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER & MIX BOX WITH RELIEF FA

HTDM

NOTE:

1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED

TO MEET YOUR SPECIFIC NEEDS

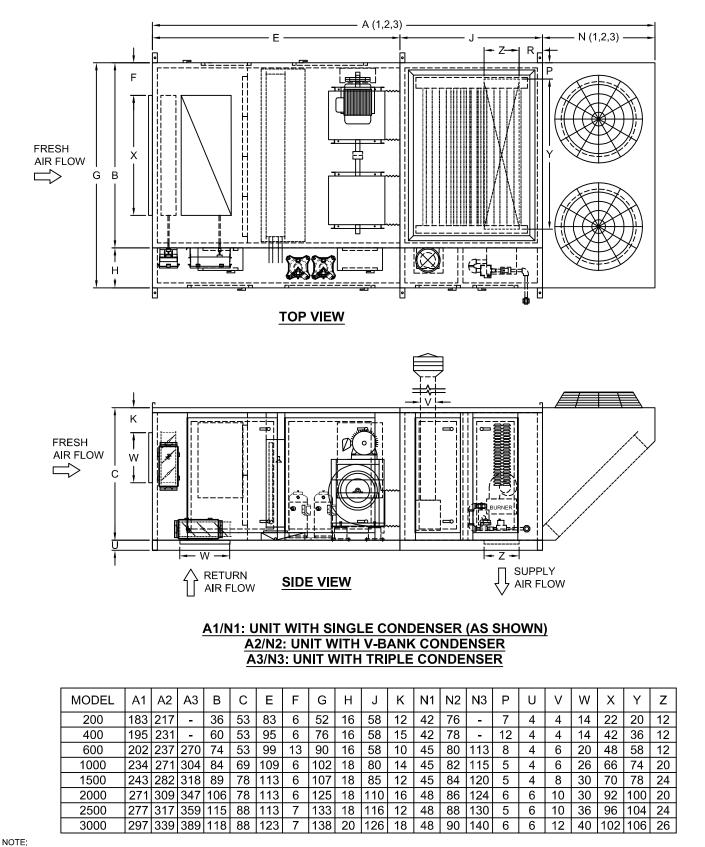
2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED.

RECOMMENDED CLEARANCES IS MINIMUM 24".

3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS. 4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

5. LIFTING LUG 2"x4" (TYP.)

6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS


7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO MANUFACTURING TOLERANCES.

8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

9. SEE PAGE 8 FOR UNIT WEIGHTS

TITLE HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, DX COIL, MIX BOX, HORIZONTAL DISCHARGE AND CONDENSER

HTDM

1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES

CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED TO MEET YOUR SPECIFIC NEEDS

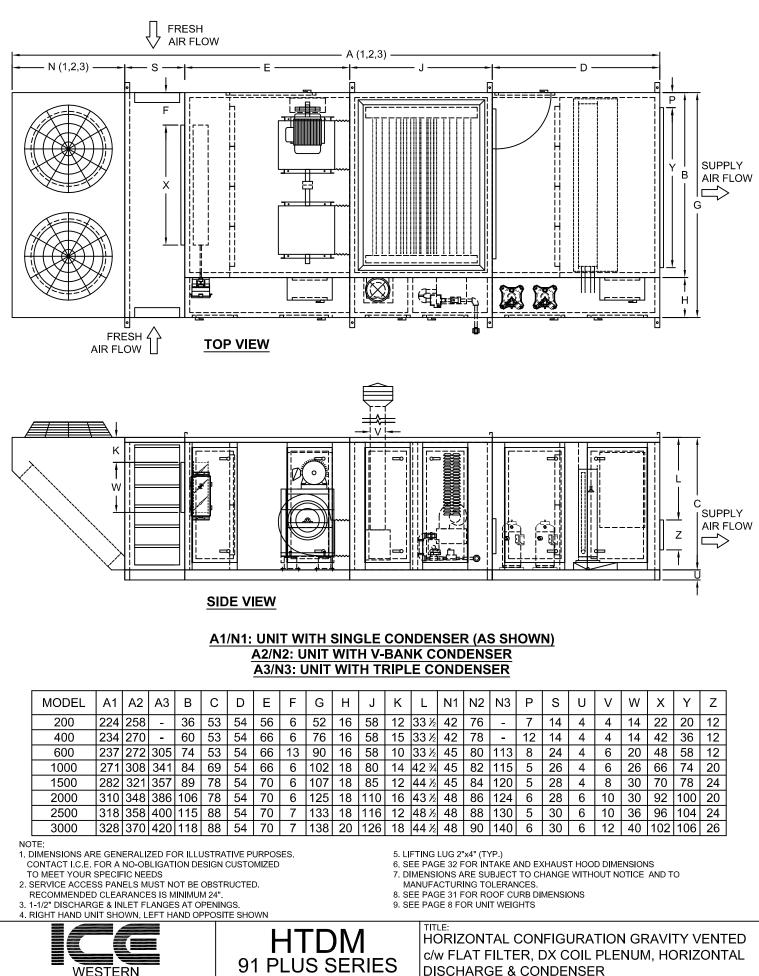
2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED.

- RECOMMENDED CLEARANCES IS MINIMUM 24".
- 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.

4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

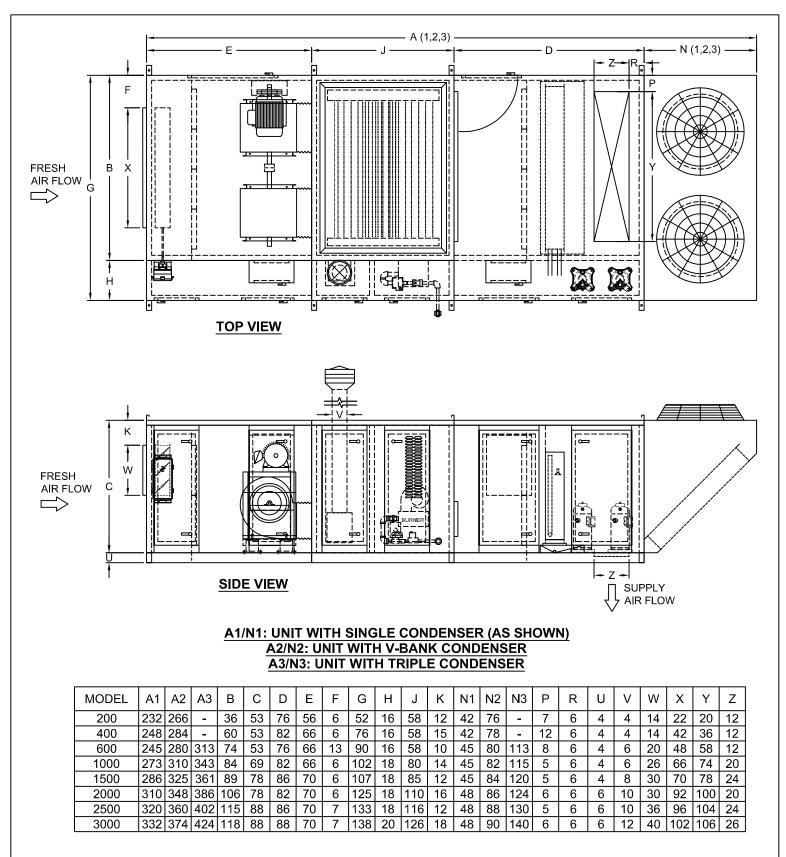
5. LIFTING LUG 2"x4" (TYP.)

6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO


MANUFACTURING TOLERANCES.

8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

9. SEE PAGE 8 FOR UNIT WEIGHTS


TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, DX COIL, MIX BOX, BOTTOM **DISCHARGE & CONDENSER**

HTDM

WESTERN

HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, DX COIL PLENUM, HORIZONTAL **DISCHARGE & CONDENSER**

1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED

TO MEET YOUR SPECIFIC NEEDS

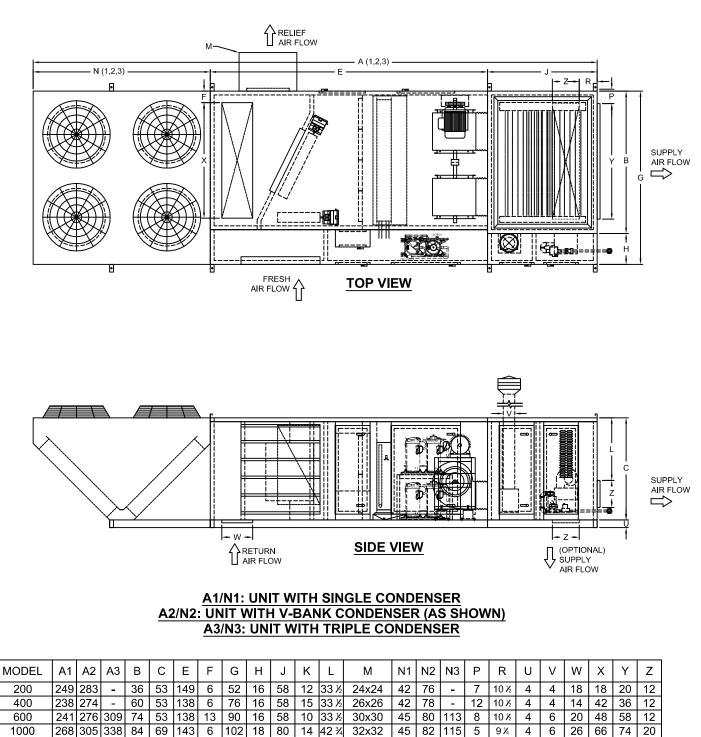
2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED. RECOMMENDED CLEARANCES IS MINIMUM 24".

3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.

4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

5. LIFTING LUG 2"x4" (TYP.)

6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO


MANUFACTURING TOLERANCES.

8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

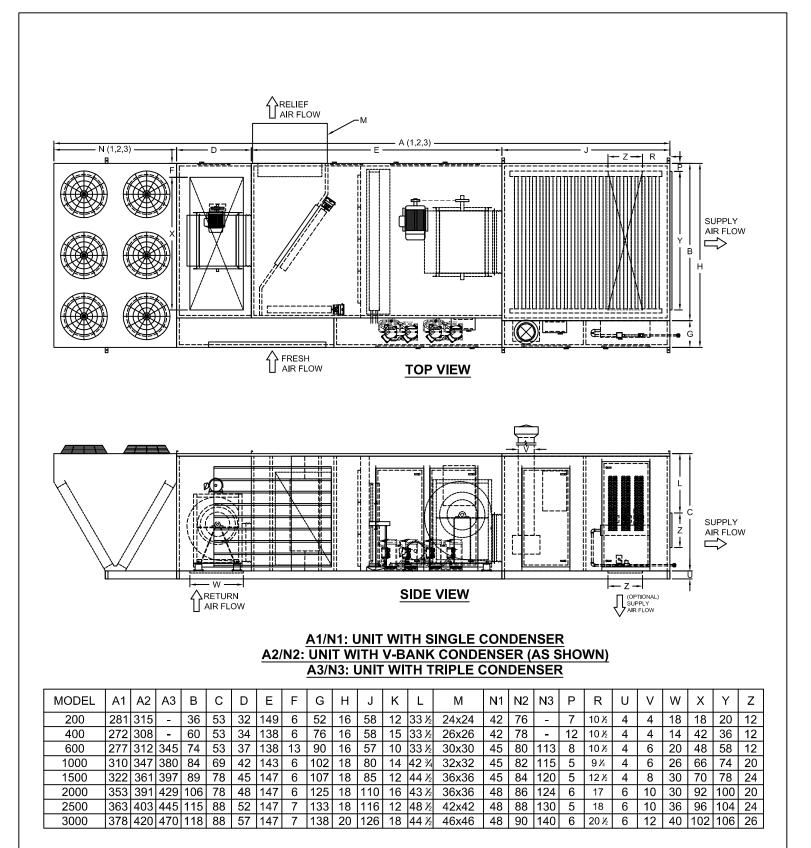
9. SEE PAGE 8 FOR UNIT WEIGHTS

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, DX COIL PLENUM, BOTTOM **DISCHARGE & CONDENSER**

HTDM

					~ ~		-	~-		~~									•	•				. —
400	238	274	-	60	53	138	6	76	16	58	15	33 ½	26x26	42	78	-	12	10 ½	4	4	14	42	36	12
600	241	276	309	74	53	138	13	90	16	58	10	33 ½	30x30	45	80	113	8	10 ½	4	6	20	48	58	12
1000	268	305	338	84	69	143	6	102	18	80	14	42 ¾	32x32	45	82	115	5	91⁄4	4	6	26	66	74	20
1500	277	316	352	89	78	147	6	107	18	85	12	44 ½	36x36	45	84	120	5	12 ½	4	8	30	70	78	24
2000	305	343	381	106	78	147	6	125	18	110	16	43 ½	36x36	48	86	124	6	17	6	10	30	92	100	20
2500	311	351	393	115	88	147	7	133	18	116	12	48 ½	42x42	48	88	130	5	18	6	10	36	96	104	24
3000	321	363	413	118	88	147	7	138	20	126	18	44 ½	46x46	48	90	140	6	20 ½	6	12	40	102	106	26

- 1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED
- TO MEET YOUR SPECIFIC NEEDS
- 2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED. RECOMMENDED CLEARANCES IS MINIMUM 24".
- 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
- 4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN



5. LIFTING LUG 2"x4" (TYP.)

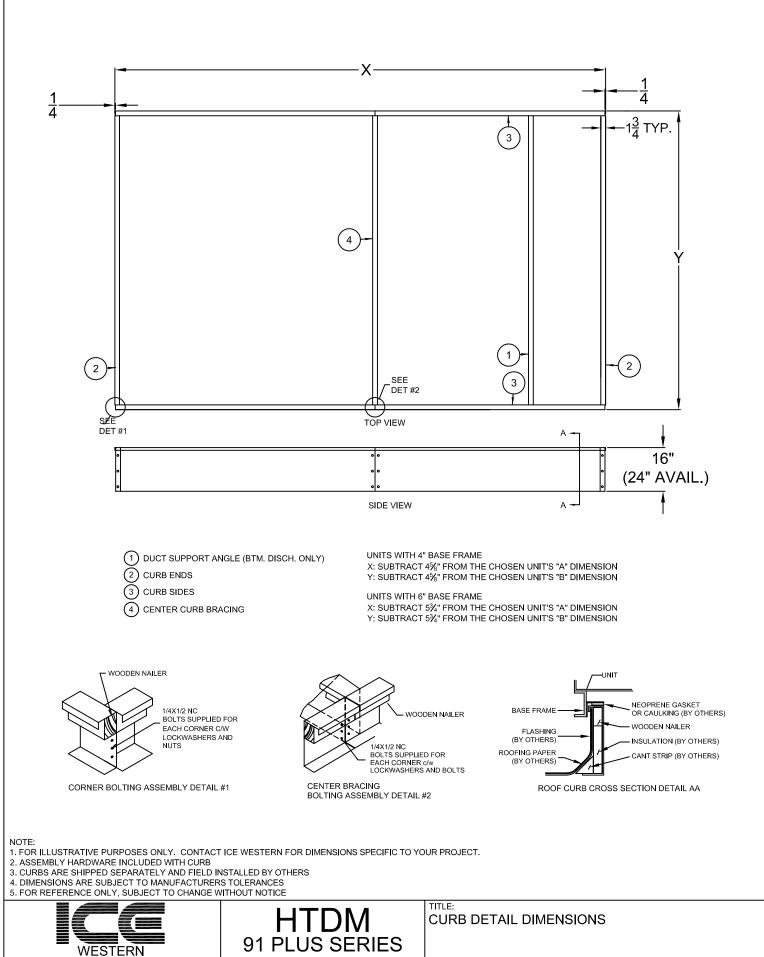
- 6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO
- MANUFACTURING TOLERANCES.
- 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS
- 9. SEE PAGE 8 FOR UNIT WEIGHTS

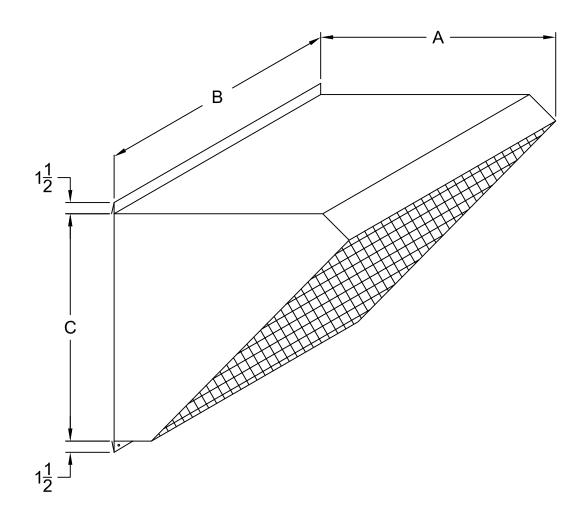
TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, DX COIL & MIX BOX WITH RELIEF **FA & CONDENSER**

HTDM

- 1. DIMENSIONS ARE GENERALIZED FOR ILLUSTRATIVE PURPOSES. CONTACT I.C.E. FOR A NO-OBLIGATION DESIGN CUSTOMIZED
- TO MEET YOUR SPECIFIC NEEDS
- 2. SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED. RECOMMENDED CLEARANCES IS MINIMUM 24".
- 3. 1-1/2" DISCHARGE & INLET FLANGES AT OPENINGS.
- 4. RIGHT HAND UNIT SHOWN, LEFT HAND OPPOSITE SHOWN

5. LIFTING LUG 2"x4" (TYP.)


- 6. SEE PAGE 32 FOR INTAKE AND EXHAUST HOOD DIMENSIONS
- 7. DIMENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO


MANUFACTURING TOLERANCES. 8. SEE PAGE 31 FOR ROOF CURB DIMENSIONS

- 9. SEE PAGE 8 FOR UNIT WEIGHTS

TITLE: HORIZONTAL CONFIGURATION GRAVITY VENTED c/w FLAT FILTER, RETURN BLOWER SECTION, DX COIL, MIX BOX WITH RELIEF FA & CONDENSER

HTDM

HTDM 91 PLUS SERIES									
MODEL	MODEL A B C								
200	19 3/4	36	51 1/2						
400	19 3/4	60	51 1/2						
600	39	74	51 1/2						
1000	43 1/2	84	67 1/2						
1500	52 3/4	89	76 1/2						
2000	79	111	76 1/2						
2500	79	115	86 1/2						
3000	79	118	86 1/2						

HTDM 91 PLUS TYPICAL SPECIFICATIONS

TYPE AND DESCRIPTION

Furnish an I.C.E HTDM DX Model indirect fired self-contained make-up air unit with packaged cooling in accordance with the following specifications. The unit shall be ETL and CETL certified.

The heater shall be designed to ensure 91Plus efficiency at full firing rate and the power burner has a turndown capacity between 23:1 and 60:1 depending on the HTDM selection. The heat exchanger and blower shall be constructed so they can easily be disassembled and reassembled in the field if necessary. The unit shall be equipped to operate from a single point power connection. The heater shall be flame tested before shipment and the manufacturer shall keep a detailed flame test report on file. Factory testing shall be confirmed with a combustion analyzer and flow meter. The heater shall be shipped completely factory assembled and wired including all pre-piped manifold components and fuses, ready for immediate power and fuel connections.

CASING

The unit exterior casing shall be heavy gauge G90 rated bonderized steel. Unit roof shall feature standing seam construction. The entire unit casing shall be insulated with 1-in. thick 1.5-lb. (2-in. thick 1.5-lb.) fiberglass insulation with hard neoprene backing in a sandwich wall fashion (22-gauge solid liner). The unit exterior shall be finished with industrial enamel (catalyzed epoxy) paint. An integral welded iron channel frame shall support the unit casing. The structural iron frame shall be sandblasted, primed and finished with industrial enamel (catalyzed epoxy) paint.

BLOWER/MOTOR SECTION

The fan section and motor assembly shall be constructed in accordance with the requirements of the Air Moving and Conditioning Association (AMCA). The assembly shall be designed to house the fan(s), bearings, motor, and v-belts, which shall be selected for at least 50% above the rated motor capacity. The fan(s) and motor shall be mounted on a welded unitary base made of angle iron frame. The frame shall be sandblasted, primed and finished with industrial enamel (catalyzed epoxy) paint. The unitary base shall be provided with seismic spring vibration isolation. The blower section shall have a hinged access door with Austin Romtech handles to allow easy maintenance of filters and belts. The NEMA T-Frame motor shall be mounted on an adjustable base located within the fan section. The blower shall be a forward curve DWDI centrifugal blower. The blower wheel shall be statically and dynamically balanced, and mounted on a turned, ground and polished shaft with rigid bearing supports. The shaft shall be designed with a maximum operating speed not exceeding 75% of the first critical speed. The bearings shall be split taper lock ball bearing type L20 minimum life of 100,000 hours (L10 200 kHr).

Fan performance shall be based on tests conducted in accordance with AMCA Standard Test Code for Air moving Devices. (All fans shall have sharply rising pressure characteristic extending throughout the operating range and continuing to rise well beyond the efficiency peak to assure quiet and stable operation under all conditions. Horsepower characteristics shall be truly non-overloading and shall reach a peak in the normal selection area.) Fan manufacturer shall provide sound power ratings in the eight octave bands, which shall be based on AMCA Standard 300-67, test, setup number one. Sound power ratings shall be referenced 10-12 watts. A factory dynamic balance shall be made on all fans after their assembly. An IRD or PMC analyzer shall be used to measure velocity, and the final reading shall not exceed 0.1 inches per second. The exact level of vibration shall be recorded on the fan as proof of the final dynamic balance at the factory.

HEAT EXCHANGER

The heat exchanger shall be of multiple pass design, made up of at least 16-gauge stainless steel drum and tubes. The primary and secondary heat transfer surfaces shall be constructed of Type 409 series stainless steel, with internal stainless steel high efficiency enhancing baffles. The stainless steel tubes shall be continuously welded into the secondary front and rear header tube sheets to ensure an airtight seal. After welding, the heat exchanger shall be pressure tested to 20 psi to ensure that there are no leaks. Manufacturer shall provide complete pressure testing report with Installation Manual. Failure to provide this report will result in a 10% holdback. Units shall be provided with multiple condensate drains. The heat exchanger section shall have an internal radiation shield to maintain a jacket loss of less than 2% of rated output. All heat transfer surfaces, including headers and the front collector box, shall be inside the casing and in the airstream. The construction of the heat exchanger shall permit free, unrestricted lateral, vertical, and peripheral expansion during the heating and cooling cycle without damage or strain to any parts. The burner shall be constructed with at least 14-gauge stainless steel and with the air baffles being made up of 430 stainless steel to ensure high durability and life of the burner. The burner assembly shall be a blow through positive pressure type with an intermittent pilot ignition system. Flame supervision shall be with a solid state programmed flame relay complete with flame rod. The unit's burner motor and modulating gas valve must be electronically controlled to guarantee, to the customer, a highly efficient unit at all times and applications. The unit efficiency shall be 91Plus through the entire operating range depending on which HTDM selection is used and shall be independently tested and verified by ETL. The main and pilot manifolds shall be completely factory pre-piped to the burner. This assembly must be factory wired and include the following minimum components: main and pilot manual shutoff valves, main and pilot regulators, main and pilot automatic shut-off valves and adequate union and test ports for unconstrained service. HTDM 200, 400 and 600 indoor units can be vented using type B vent without a draft hood. HTDM 1000 and 1500 indoor units can be vented using type B vent with a diverter to assure safety and guarantee that all combustible gases leave the unit. There must also be a means of collecting and disposal of condensate formed in the flue gas by means of a 409 stainless steel flue box with drain and heat exchanger drain. Drains shall be made of stainless steel tubing. The flue chimney will be made of stainless steel.

HEATING CONTROLS

Units must be controlled electronically to achieve a turndown of at least 23:1 and to guarantee the heat exchanger efficiencies of at least 91Plus. Unit controller must be a true proportional integral decay (PID) controller to maintain the turndown and unit efficiencies. The controller must be able to electronically adjust the burner blower and modulating gas valve to maintain ideal combustion levels and shall monitor the amount of combustion air available to guarantee proper emission standards. Unit control will consist of a highly accurate feedback control system. Corrective action in this system is taken only when the balance has been upset due to a change in the disturbance variable. Any other control that does not behave in this manner is unacceptable. The ICECON III controller analyzes the process and calculates a control error from the measured values. Continuous cycling of the burner or blower is unacceptable. The proportional control in the ICECON III controller will provide an output signal in proportion to the size of the control error. If the control error persists, the output will continue to ramp in the correct direction, until the control error is eliminated.

The ICECON III modulation controller is compatible with the following external inputs:

- 1) Discharge air sensor.
- 2) Discharge air sensor with space override thermostat.
- 3) Discharge air sensor with remote temperature selector and space override thermostat.
- 4) Discharge air sensor with high and low temperature remote temperature selector and space reset thermostat.
- 5) 0-10 volt dc signal from building management system.
- 6) 4-20 mA signal from building management system.

COOLING CONTROLS

Cooling control shall be achieved via a multi-stage sequencer. The sequencer shall be controlled with an analog signal provided by the discharge air thermostat. As the discharge air thermostat requires cooling the signal shall increase, thereby turning on the stages at specific set points. The set points shall be set with appropriate offset and differential to ensure accurate discharge temperature is maintained. The stages are to be sequenced without turning on and off of compressors to minimize unnecessary wear on the compressors. Upon sensing a call for cooling from the space, the compressors shall provide full cooling until the space sensor is satisfied, upon which time the cooling shall revert to discharge air control. A low discharge temperature set point with a large differential shall be set to prevent the compressor from cycling on and off. The compressor will remain on low setting until cooling is disabled manually or the ambient temperature falls below the minimum set point.

ELECTRICAL CONTROL EQUIPMENT

Electrical assembly and components shall be in strict accordance with the latest provisions and requirements of the Nation Electric Code. Control cabinet shall be designed and constructed to ETL specifications. A safety disconnect switch shall be mounted on the unit. The controls shall be located in a weatherproof cabinet. Provisions for service padlocking shall be provided. The following items shall be located within the cabinet: fuses, starters, control relays, timing and holding relays, resistors and numbered terminal strips. All components shall be labeled and cross-referenced to control and field wiring diagrams. The control circuit shall be 24V, single phase. Wiring shall be neatly run in "PANDUIT" wiring duct. Low and/or line voltage thermostats shall be furnished shipped loose for installation by others. Unit shall be equipped with automatic low limit freeze protection with bypass timer.

DAMPERS & FILTER SECTION

The dampers are to be galvanized steel (aluminum airfoil low leak) type (with seals). The dampers shall be equipped with 2-position (modulating) actuators. The filters shall be 2" pleated throwaway type with minimum of 85% arrestance and 30% efficiency. Filter access shall be through a latched and gasketed access doors located on both sides of the unit. (Final filters shall be 4 or 12 inch high efficiency cartridge filters.)

REMOTE CONTROL PANELS

Remote NEMA 1(12) locking control panel shall be equipped with summer/off/winter switch and blower on, burner on, flame failure and loaded filter lights. (A remote adjustment potentiometer shall control damper positioning.) (An LCD display shall provide system temperature and set points.)

EVAPORATOR COILS

Evaporator coils are intended for use with a wide range of applications and refrigerant types. Coils are to be designed to maximize performance under specified conditions with minimal air-side pressure drop.

- Coils shall be UL recognized as Refrigerant Containing Component. Coils to be used with refrigerant R-410A shall have undergone cycle testing, and shall be safety listed with 750 psig rating.
- Tubes and return bends shall be constructed from seamless UNS C12200 copper conforming to ASTM B224 and ASTM E527. Properties shall be O50 light annealed with a maximum grain size of 0.040 mm.
- Tubes are to be mechanically expanded into fins (secondary surface) for maximum heat transfer. Materials are to be 3/8" diameter x (0.014, 0.022) wall thickness, 1/2" diameter x (0.016, 0.025) wall thickness, or 5/8" diameter x (0.020, 0.025, 0.035, 0.049) wall thickness.
- Secondary surface (fins) shall be of the plate-fin design using aluminum or copper, with die-formed collars. Fin design to be flat, waffle, or sine-wave in a staggered tube pattern to meet performance requirements.
- Collars will hold fin spacing at specified density, and cover the entire tube surface. Aluminum properties are to be Alloy 1100 per ASTM B209, with O (soft) temper; copper is to be Alloy 11000 per ASTM B152-06 with soft (anneal) temper. Fins are to be free of oils and oxidation.
- Headers are to be constructed of seamless UNS C12200, Type L (drawn) copper material sized to match specified connection size. Type K (drawn) copper headers shall be offered as optional material.
- Die-formed copper end caps are brazed on the inside of the headers, unless spun-closed (for sized up to 1-3/8").
- Evaporator coils shall be designed with brass liquid distributors (as required), and copper sweat suction connections. Distributors shall be capped using softsolder for ease of cap removal; suction connections shall be capped.
- Coil casing material shall be of G90 galvanized steel, 16 gauge minimum. Heavier material, stainless steel, copper, or aluminum casing are to be provided as required.
- Intermediate tube supports are to be provided on all coils 48" and longer fin length. Coil casing on top and bottom of coils are to have double-flange construction, allowing for vertical stacking of coils.
- All coils are to be brazed with minimum 5% silver content (BCup-3) filler material to insure joint integrity.
- Coils shall be tested at 550 psig using dry nitrogen, submerged under water. Dual-operator verification shall determine that all coils are leak-free.
- Coils shall be shipped with nitrogen charge to verify leak-free integrity, and to prevent moisture migration into coil.
- Coils shall be certified to withstand 750 psig working pressure.

CONDENSER COILS

Condenser coils are intended for use with a wide range of applications and refrigerant types. Coils are to be designed to maximize performance under specified conditions with minimal air-side pressure drop.

- Coils shall be UL recognized as Refrigerant Containing Component. Coils to be used with refrigerant R-410A shall have undergone cycle testing, and shall be safety listed with 750 psig rating.
- Tubes and return bends shall be constructed from seamless UNS C12200 copper conforming to ASTM B224 and ASTM E527. Properties shall be O50 light annealed with a maximum grain size of 0.040 mm.
- Tubes are to be mechanically expanded into fins (secondary surface) for maximum heat transfer. Materials are to be 3/8" diameter x (0.014, 0.022) wall thickness, 1/2" diameter x (0.016, 0.025) wall thickness, or 5/8" diameter x (0.020, 0.025, 0.035, 0.049) wall thickness.
- Internally enhanced rifled or cross-hatched tubes can be offered as an option.
- Secondary surface (fins) shall be of the plate-fin design using aluminum or copper, with die-formed collars. Fin design to be flat, waffle, or sine-wave in a staggered tube pattern to meet performance requirements.
- Collars will hold fin spacing at specified density, and cover the entire tube surface. Aluminum properties are to be Alloy 1100 per ASTM B209, with O (soft) temper; copper is to be Alloy 11000 per ASTM B152-06 with soft (anneal) temper. Fins are to be free of oils and oxidation.
- Headers are to be constructed of seamless UNS C12200, Type L (drawn) copper material sized to match specified connection size. Type K (drawn) copper headers shall be offered as optional material.
- Die-formed copper end caps are brazed on the inside of the headers, unless spun-closed (for sized up to 1-3/8").
- Condenser coils shall be designed with copper sweat connections, and shall be shipped with caps on connections.
- Coil casing material shall be of G90 galvanized steel, 16 gauge minimum. Heavier material, stainless steel, copper, or aluminum casing are to be provided as required.
- Coils designed for hot-gas applications shall have oversized tube sheet holes for hot gas feeds to allow for free expansion and contraction of tubes during
 operation.
- Intermediate tube supports are to be provided on all coils 48" and longer fin length. Coil casing on top and bottom of coils are to have double-flange construction, allowing for vertical stacking of coils.
- All coils are to be brazed with minimum 5% silver content (BCup-3) filler material to insure joint integrity.
- Coils shall be tested at 550 psig using dry nitrogen, submerged under water. Dual-operator verification shall determine that all coils are leak-free.
- Coils shall be shipped with nitrogen charge to verify leak-free integrity, and to prevent moisture migration into coil.
- Coils shall be certified to withstand 750 psig working pressure.

COMPRESSORS

Hermetic digital scroll compressors shall be set on resilient neoprene mounts and complete with line voltage break internal overload protection, internal pressure relief valve and crankcase heater. Each unit shall have a minimum of two compressors. Whereby a unit utilizing two compressors the first stage compressor must be a digital scroll operating with a Emerson EC3 series stand-alone superheat controller with a built in synchronization control for the digital scroll. Unit will provide turndown on cooling. Multiple refrigeration circuits shall be separate from each other. Refrigeration circuits shall be complete with liquid line filter driers and service ports fitted with Schraeder fittings. Units shall incorporate electronic expansion valves, an EC3 digital superheat controller and combination sight glass moisture indicators. System charge will be designed for 10 degrees Fahrenheit of superheat. Each system shall be factory run and adjusted prior to shipment. Controls shall include:

- Compressor motor contacts
- Overload protection control
- Cooling relays
- Ambient compressor lockout
- Dual pressure controls
- Anti-cycle timers

CONDENSER FANS

Condenser fans shall be aluminum blade, direct drive, complete with 3 1/4 inch high venturi and 1140 RPM condenser fan motor controlled by VFD taking a signal from a transducer located in the discharge line. This, along with an electronic expansion valve allows for Floating Head and condension down to 70 degrees Fahrenheit condensing.

Packaged units shall operate down to 50 degrees Fahrenheit as standard. Minus 50 refrigeration systems are available as an option. Compressors shall be located on the side of the unit in a service enclosure complete with hinged access doors.

ICE Western's DX Cooling Modulation

AC-Tech VFD

Programmable digital and analog I/O allowing drive to be configured for tasks such as multiple preset speeds, electronic braking and motor jogging

- Power range: 0.37 to 22 kW
- Wide speed range with up to 200% torque for highly dynamic motor response
- EPM plug-in memory chip & programmer tocopy parameters

EC3-072 PCN 807 8 Deptal Supe

Superheat Controller EC3-X33

Perform all control tasks and precisely

regulates the superheat at the evaporator

temperature and pressure sensor, controls

The MOP (Maximum Operating Pressure)

function protects the compressor from

Positive shut-off function eliminates the use of an additional solenoid valve, and built in backup battery closes the valve

A complete system consisting of control

valve, superheat controller, and

the superheat exactly to setpoint

dangerous overload conditions

after power loss.

Tandem Digital Scroll Compressors

 Simple, variable modulation, for temperature control within 0.5 F

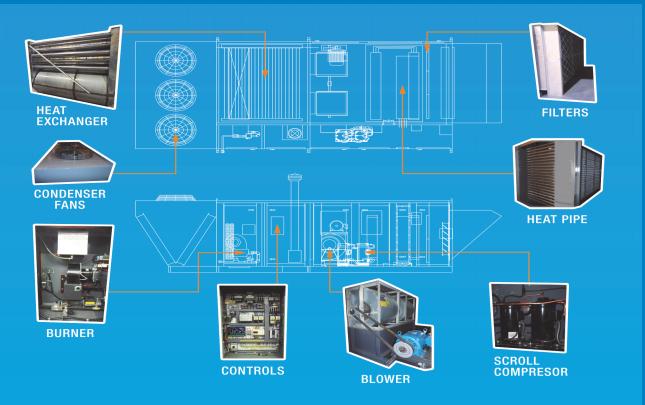
- Lower operating cost
- Reduced power consumption up to 30% more efficient than using hot-gas bypass
- Longer cycle times to reduce wear and improve humidity control
- Available for commercial air-conditioning and refrigeration applications
- Available in configurations from 3-30HP

EX4 Electrical Control Valve

- Optimized for control of liquid or gaseous mass flow in refrigeration systems
- Energized directly from the electrical power and therefore operates independent from differential pressure ensuring accurate temp/humidity control

Custom Wiring Options

- BMS integration of all major control manufacturers
- Incorporated JIC Wiring
- L.O.N. Protocol/Distech
- BAC-NET Protocol/Distech DTC Control
- Allen Bradley PLC
- o Siemens PLC



9754 54 ST SE Calgary, AB—T2C 5J6 Phone: 403-252-5577 Fax: 403-252-5556 www.icewestern.com

TYPICAL HTDM 91+ COMPONENTS

PERFORMANCE SPECIFICATIONS

MODEL	INPUT/OUTPUT (MBH)	AIR CAPACITY (CFM)	TEMPERATURE RISE (Deg-F)
		1532	110
		1685	100
HTDM 200 91% EFF		1872	90
OMEGA		2106	80
OMECA		2407	70
		3370	
		3064	
		3370	
HTDM 400 91% EFF		3745	
OMEGA		4213	
		4815	
		5617 6741	
		4596	110
		5056	100
HTDM 600 91% EFF		5617	
OMEGA	600/546		
		8426	
		7660	110
		9362	90
HTDM 1000 91% EFF	1000/910	10532	
OMEGA			
		14043	60
		16852	50

MODEL	INPUT/OUTPUT (MBH)	AIR CAPACITY (CFM)	TEMPERATURE RISE (Deg-F)
		11490	110
		12639	100
HTDM 1500 91% EFF		14043	90
OMEGA		15799	80
OWIEGA		18056	70
		21065	60
		25278	50
			110
			100
HTDM 2000 91% EFF			90
OMEGA		21065	80
omean		24074	70
		28086	
		33704	50
		19150	110
		21065	100
HTDM 2500 91% EFF		23405	90
OMEGA			
OWIEGA		30093	70
		35108	60
		42130	50
		22980	110
			100
		28086	90
HTDM 3000 91% EFF OMEGA		31597	80
OMEGA		36111	70
		42130	60
		50556	50

For more information, please visit our website: www.icewestern.com