

# **Objective of Presentation**

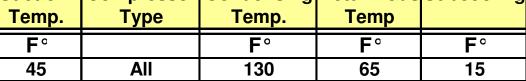
- **1. Current EER Regulation**
- 2. Identifying The Need For Change

**WESTERN** 

3. Embrace New Technology

## EER – Energy Efficiency Ratio

### **Existing EER Measure EER is a Standardized Measure of** Compressor Performance


EER= (Cooling capacity in Btu/hr)/ (Input power in watts)

#### **ARI Test Standards**

Standard 540-2004 spells out conditions at which Refrigeration & A/C Compressors need to be tested for Publishing Performance Rating Data



| Stan    | dard Rating C | Condition for ( | Compressor   | rs and    |
|---------|---------------|-----------------|--------------|-----------|
| Con     | npressor Unit | s for Commei    | cial Refrige | ration    |
|         |               | Application     |              |           |
| Sustion | Comprosort    | Condonaina      | Doturn Coo   | Subscalin |
| Suction | Compressor    | Condensing      | neturn Gas   | Supcoolin |





## EER – Energy Efficiency Ratio

- Current EER Standards ASHRAE 90.1 minimum energy efficiency limits – October 1, 2001
- Proposed EER Standards Integrated Energy Efficiency Ratio (IEER) values to replace IPLV values as per – January 2010
  - ASHRAE 90.1 2001 New minimum
  - energy efficiency limits January 2010





## EER – Energy Efficiency Ratio

|         | Fable 8    |        |
|---------|------------|--------|
| Minimum | efficiency | levels |

(See Clauses 7.2 and 8.5.)

|                              |                                              |                                    |                                                                                                                                                                           | Level                     | 1†                                     |            |                | Level 2‡                    |                     |                     |                 |  |
|------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|------------|----------------|-----------------------------|---------------------|---------------------|-----------------|--|
|                              |                                              |                                    |                                                                                                                                                                           | EER                       | СОР                                    |            | IPLV           | EER                         | СОР                 |                     | IPLV            |  |
| ARI* type<br>classification  | Description                                  | Condenser<br>type                  | Cooling capacity range,<br>kW (1000 Btu/h)                                                                                                                                |                           | At 8.3 °C At – 8.3 °C<br>(47°F) (17°F) |            |                |                             | At 8.3 °C<br>(47°F) | At-8.3 °C<br>(17°F) |                 |  |
| SP-A                         | Single packaged                              | Air cooled                         |                                                                                                                                                                           | 10.3<br>9.7<br>9.5<br>9.2 |                                        |            | <br>9.7<br>9.4 | 11.2<br>11.0<br>10.0<br>9.7 |                     |                     | —<br>9.7<br>9.4 |  |
| RC-A                         | Remote condenser,<br>including indoor<br>fan | Air cooled                         | $ \begin{array}{l} \geq 19.0 < 39.6 \ (\geq 65 < 135) \\ \geq 39.6 < 70.3 \ (\geq 135 < 240) \\ \geq 70.3 < 223 \ (\geq 240 < 760) \\ \geq 223 \ (\geq 760) \end{array} $ | 10.3<br>9.7<br>9.5<br>9.2 |                                        | _          | 9.7<br>9.4     | 11.2<br>11.0<br>10.0<br>9.7 |                     |                     | <br>9.7<br>     |  |
| RCU-A-C                      | Condensing unit<br>with no indoor fan        | Air cooled                         | ≥ 39.6 (≥ 135)                                                                                                                                                            | 10.1                      | _                                      |            | _              | 10.1                        | _                   | _                   | _               |  |
| RCU-A-CB                     | Condensing unit, coil, and blower            | Air cooled                         | ≥ 19.0 < 39.6 (≥ 65 < 135)<br>≥ 39.6 < 70.3 (≥ 135 < 240)<br>≥ 70.3 < 223 (≥ 240 < 760)<br>≥ 223 (≥ 760)                                                                  | 10.3<br>9.7<br>9.5<br>9.2 |                                        |            | <br>9.7<br>    | 11.2<br>11.0<br>10.0<br>9.7 |                     |                     | <br>9.7<br>9.4  |  |
| SP-E,<br>SP-W                | Single packaged                              | Evaporative<br>and water<br>cooled | ≥ 19.0 < 39.6 (≥ 65 < 135)<br>≥ 39.6 < 70.3 (≥ 135 < 240)<br>≥ 70.3 (≥ 240)                                                                                               | 11.5<br>11.0<br>11.0      |                                        |            | 10.3           | 11.5<br>11.0<br>11.0        | _                   |                     | 10.3            |  |
| RC-E,<br>RC-W                | Remote condenser,<br>including indoor<br>fan | Evaporative<br>and water<br>cooled | ≥ 19.0 < 39.6 (≥ 65 < 135)<br>≥ 39.6 < 70.3 (≥ 135 < 240)<br>≥ 70.3 (≥ 240)                                                                                               | 11.5<br>11.0<br>11.0      |                                        |            | <br>10.3<br>   | 11.5<br>11.0<br>11.0        |                     |                     | <br>10.3        |  |
| RCU-E-C,<br>RCU <b>-</b> W-C | Condensing unit, coil alone                  | Evaporative<br>and water<br>cooled | ≥ 39.6 (≥ 135)                                                                                                                                                            | 13.1                      | _                                      | 1 <u> </u> | _              | 13.1                        | _                   | _                   | _               |  |

C746-06

© Canadian Standards Association

(Continued)

#### **APPENDIX C – ENERGY PERFORMANCE VERIFICATION LABEL**



EP XXXXXXXXXX

ENERGY PERFORMANCE VERIFIED

RENDEMENT ENERGETIQUE VERIFIE

Label for US

ENERGY PERFORMANCE VERIFIED

EP XXXXXXXXXX

# **Objective of Presentation**

- 1. Current EER Regulation
- 2. Identifying The Need For Change

**WESTERN** 

3. Embrace New Technology

# What is Driving the Change ?

- Demand for Energy Increasing
- Distribution Limitations

## Legislation

Public Accepting Global
Climate Change Is Reality

## Refrigerant Phase out

•"Green is In"

End Users Designing "Green" System & Forcing OEMs To Change Less Refrigerant Charge & Higher Efficiency

Higher Energy Cost Higher End User Operating Costs Profit Margins Shrink





**Coal Fired** 



**Power Distribution** 





## **Precision Air**

*"Installing Carefully Designed Mechanical Systems that Include Efficient Compressors, Condensers and Evaporators Does Not Guarantee Optimum Temperature / Humidity Control, Maximum Energy Efficiency and Lowest Refrigeration Operating Expense."* 







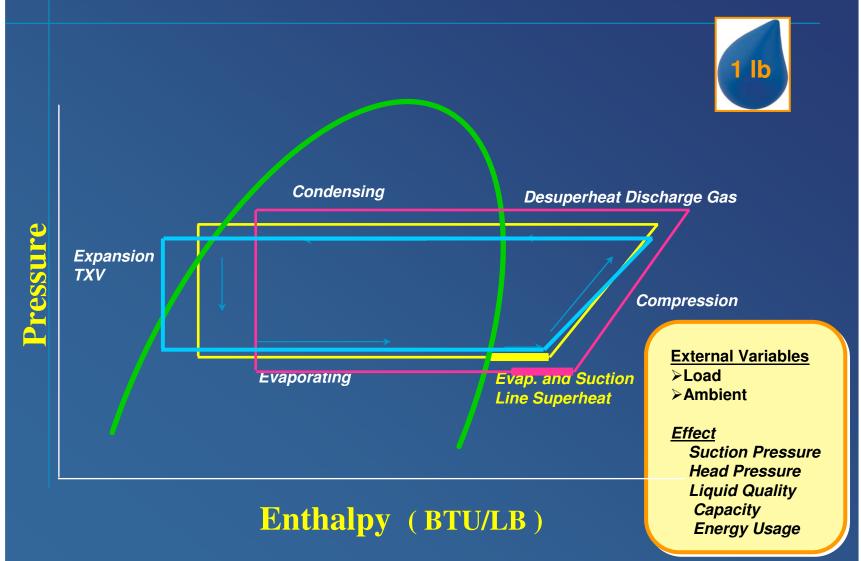
"Installing Carefully Designed Mechanical



# Because Systems Seldom Run at Design Load, They are Often Ineffective and Inefficient at

Part Load Conditions.

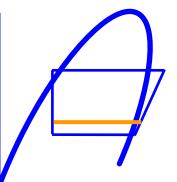



## **Efficiency Challenge**

The Challenge for System Designers, Manufacturers, and Operators is to Find Effective Ways to Modulate the System Compressors, Condenser Fans, Expansion Valves, Pressure Regulators and Other Components, to Achieve Stable and Reliable System Operation and High Efficiencies While at the Same Time Closely Controlling Precise Temperature.






## **Typical Pressure Enthalpy Diagram**



## **Stabilize Suction Pressures**

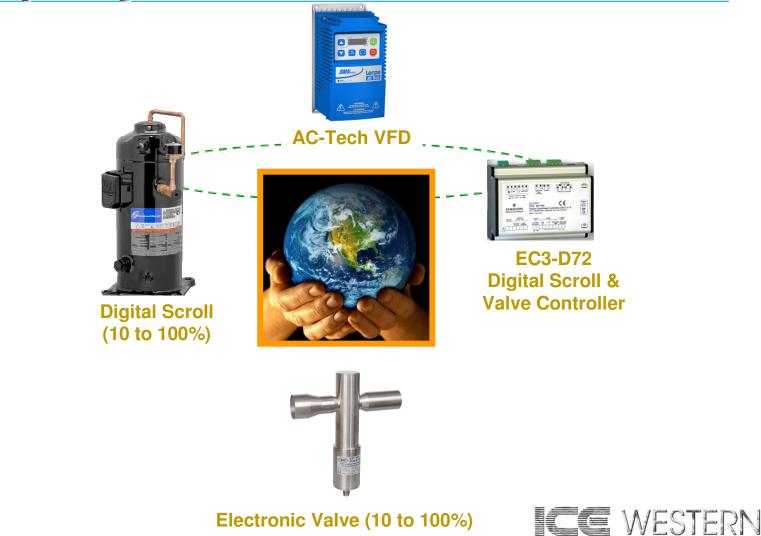
At the End of the Day the Key Factor in Maintaining Precise Temperature and Humidity Control is Suction Pressure





If Suction Pressure is Constant, the Evaporator Pressure is Constant Which in turn Yields a Higher Average Suction Pressure Thereby Reducing Energy



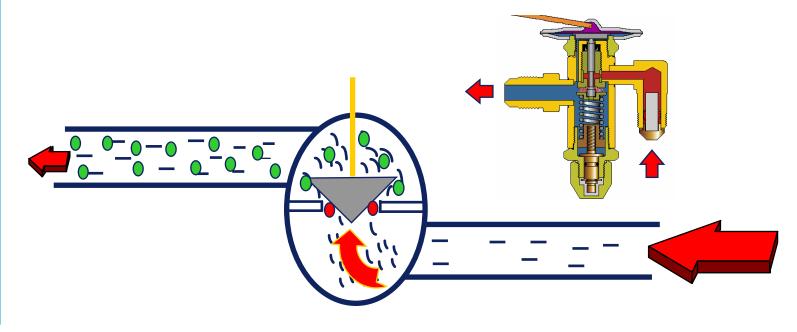

# **Objective of Presentation**

- 1. Current EER Regulation
- 2. Identifying The Need For Change

**WESTERN** 

3. Embrace New Technology

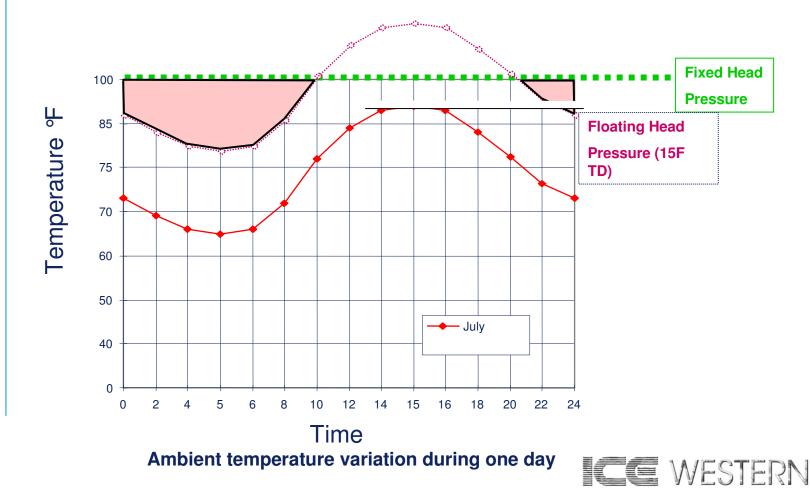
# ICE Western's Capacity Modulation Solution





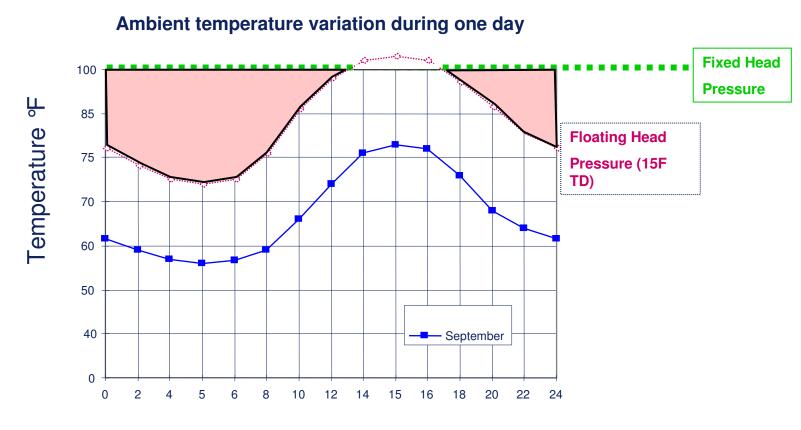






## Maintain Liquid Subcooling and Prevent Liquid Line Flash Gas.

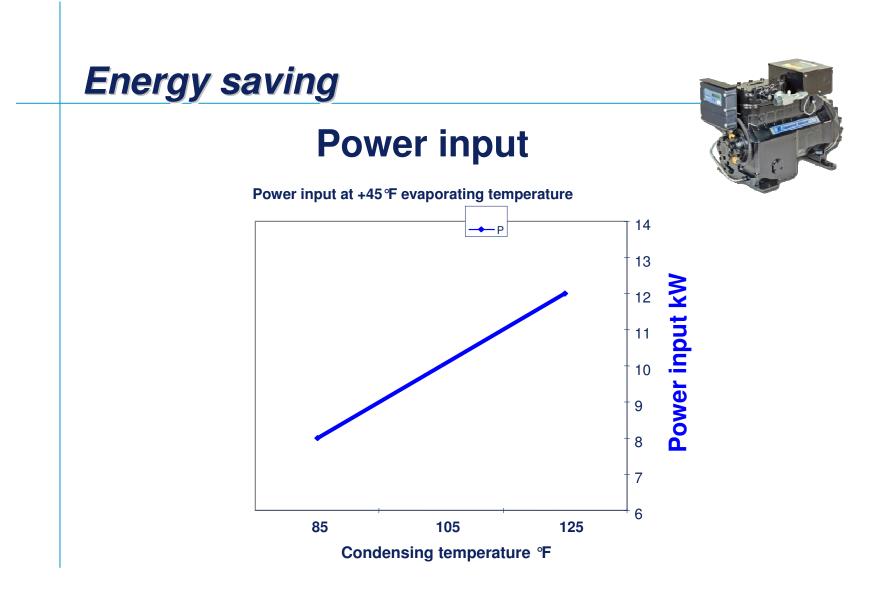





## Floating Head Pressure Vs Fixed Summer

Effect of condensing temperature



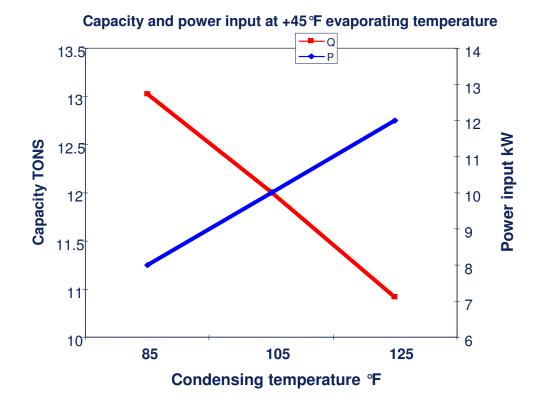

## Floating Head Pressure Vs Fixed Spring and Fall

• Effect of condensing temperature



Time







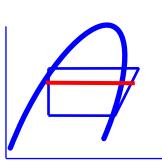

## **Energy saving**

## Capacity and power input







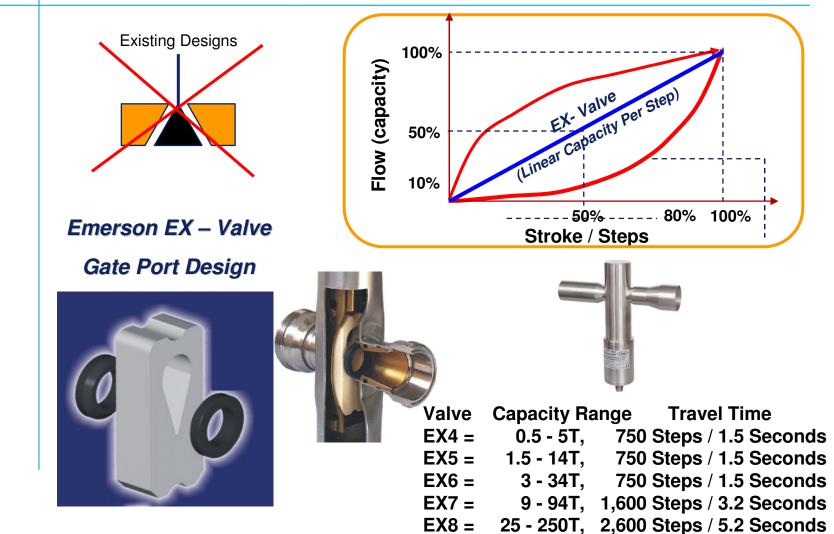

## **Floating Head Pressure**

#### "for every 1 psig Decrease in discharge pressure, compressor power

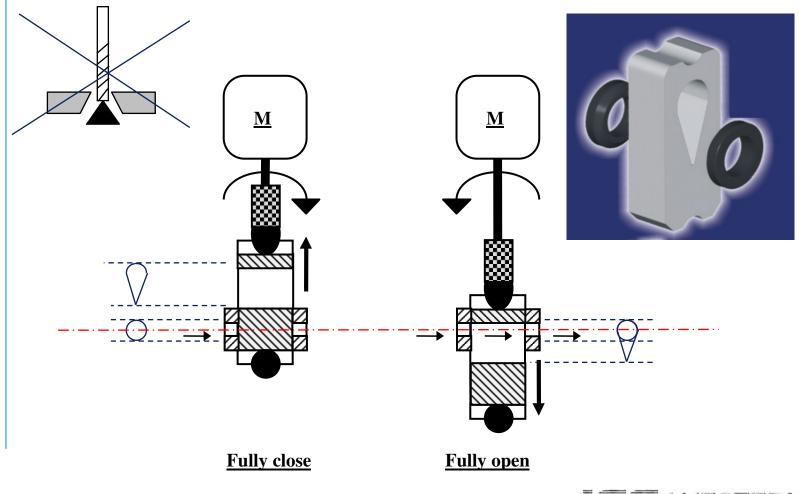
#### Is reduced approximately 0.5%"

| Tdsat (F)                                                                                                                          | Pd (Psig) | Comp. kW | %kW/psig |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|--|--|--|--|--|
| 70                                                                                                                                 | 128.1     | 20.14    | 0.65%    |  |  |  |  |  |
| 75                                                                                                                                 | 132.3     | 20.69    | 0.62%    |  |  |  |  |  |
| 80                                                                                                                                 | 143.7     | 22.16    | 0.57%    |  |  |  |  |  |
| 85                                                                                                                                 | 155.7     | 23.68    | 0.51%    |  |  |  |  |  |
| 90                                                                                                                                 | 168.5     | 25.24    | 0.48%    |  |  |  |  |  |
| 95                                                                                                                                 | 181.9     | 26.86    | 0.44%    |  |  |  |  |  |
| 100                                                                                                                                | 196       | 28.52    | 0.41%    |  |  |  |  |  |
| 105                                                                                                                                | 210.8     | 30.25    | 0.38%    |  |  |  |  |  |
| 110                                                                                                                                | 226.4     | 32.03    | 0.35%    |  |  |  |  |  |
| 115                                                                                                                                | 242.8     | 33.89    | 0.34%    |  |  |  |  |  |
| Calculations done using refrigeration model with following conditions:<br>R407C Sat. Suction Temp=-55F, Case load = 200,000 Btu/hr |           |          |          |  |  |  |  |  |

Table 2: Effect of discharge pressure on compressor power.

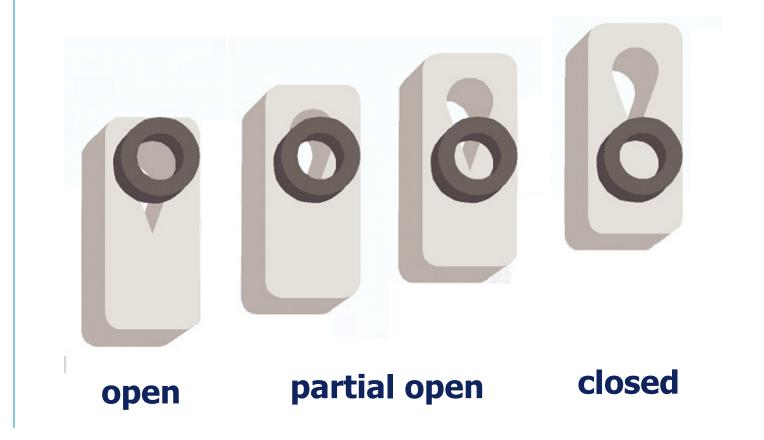



Abtar Singh, PH.D., CPC



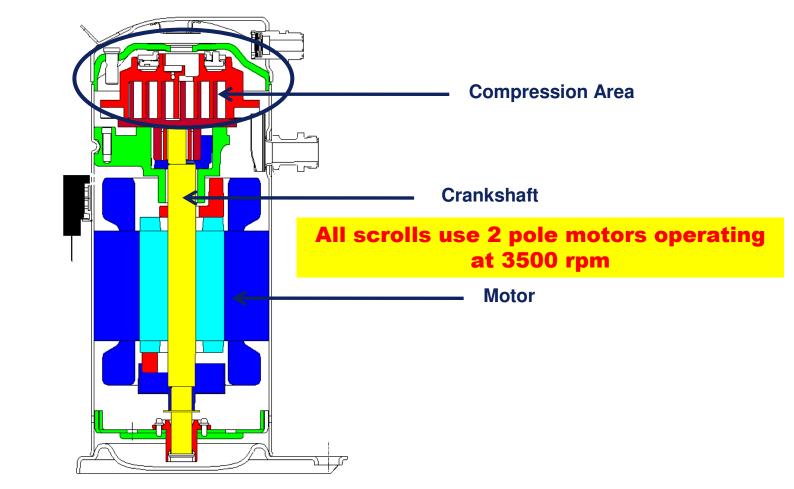

| <b>RATING</b><br>20 °F Suj<br>15 °F Sul<br>95 °F Am                                        | perheat<br>bcooling<br>ibient Air | Over          |               | C                    | ONE                      | AIR<br>DITIC   |                    | G              |                 | ZP103KCE-TF5<br>HFC-410A<br>COPELAND SCROLL®<br>TF5 200/230-3-60 |
|--------------------------------------------------------------------------------------------|-----------------------------------|---------------|---------------|----------------------|--------------------------|----------------|--------------------|----------------|-----------------|------------------------------------------------------------------|
| 60 Hz O                                                                                    | •                                 |               |               |                      |                          |                |                    |                | ```             |                                                                  |
| Evaporating                                                                                | Temper<br>-10(36)                 | o(48)         |               | t Pressure<br>20(78) | , <b>psig)</b><br>30(97) | 40(118)        | 45(130)            | 50(142)        | 55(155)         |                                                                  |
| 150 (611)C<br>P                                                                            |                                   |               |               |                      |                          | 78000<br>12400 | 86500<br>12300     | 96000<br>12300 | 106000<br>12200 | 85 105 125                                                       |
| А                                                                                          |                                   |               |               |                      |                          | 35             | 34.9               | 34.7           | 34.6            | Condensing temperatur                                            |
| M                                                                                          |                                   |               |               |                      |                          | 1360<br>6.3    | 1500<br>7          | 7.8            | 1810<br>8.7     | Condensing temperatur                                            |
| L<br>140 (540)C                                                                            |                                   |               |               |                      | 70000                    | 63.6<br>87000  | 66.3<br>96000      | 68.6<br>106000 | 70.6<br>117000  |                                                                  |
| P                                                                                          |                                   |               |               |                      | 11000                    | 10900          | 10800              | 10800          | 10800           |                                                                  |
| A<br>M                                                                                     |                                   |               |               |                      | 31.8<br>1140             | 31.5<br>1390   | 31.4<br>1530       | 1670           | 1830            |                                                                  |
| E<br>L                                                                                     |                                   |               |               |                      | 6.4<br>62.7              | 8<br>68.1      | 8.9<br>70.3        | 9.8<br>72      | 10.8<br>73.3    |                                                                  |
| 130 (475)C                                                                                 |                                   |               |               | 61500<br>9650        | 77500<br>9600            | 95000<br>9550  | 105000<br>9550     | 115000<br>9550 | 127000<br>9550  |                                                                  |
| (bisd 'eunsseld<br>L<br>120 (417)C                                                         |                                   |               |               | 28.9                 | 28.8                     | 28.6           | 28.6               | 28.6           | 28.6            |                                                                  |
| E                                                                                          |                                   |               |               | 940<br>6.4           | 1160<br>8                | 1410<br>9.9    | 1550<br>11         | 12.1           | 1850<br>13.3    | ARI Rating                                                       |
| L<br>120 (417)C                                                                            |                                   |               | 53000         | 61.3<br>67500        | 67.2<br>84000            | 71.6<br>103000 | 73.1<br>113000     | 74.2<br>124000 | 74.7<br>136000  |                                                                  |
| <b>L</b> P                                                                                 |                                   |               | 8500<br>26.4  | 8500<br>26.3         | 8450<br>26.3             | 8450<br>26.2   | 8450<br>26.2       | 8450<br>26.3   | 8500<br>26.3    |                                                                  |
|                                                                                            |                                   |               | 770           | 965<br>8             | 1180<br>9.9              | 1420<br>12.2   | 1560<br>13.4       | 1710           | 1860<br>16.1    | HT = +45°F / 130°F                                               |
| <u>.</u>                                                                                   |                                   |               | 59.5          | 65.9                 | 70.7                     | 73.8           | 74.6               | 74.7           | 74.2            |                                                                  |
| 110 (364)C                                                                                 |                                   | 44600<br>7450 | 58000<br>7450 | 73000<br>7450        | 90000<br>7450            | 109000<br>7450 | 120000<br>7500     | 132000<br>7500 | 145000<br>7550  |                                                                  |
| Temperature 6<br>Temperature 6<br>M<br>E<br>L                                              |                                   | 24.1<br>620   | 24.2<br>790   | 24.2<br>980          | 24.2<br>1190             | 24.2<br>1440   | 24.3<br>1570       | 24.3<br>1720   | 24.4<br>1870    |                                                                  |
| Tem E                                                                                      |                                   | 6<br>57.1     | 7.8<br>64.1   | 9.8<br>69.4          | 12.1<br>72.9             | 14.7<br>74.4   | 16.1<br>74.2       |                |                 |                                                                  |
| 100 (216)C                                                                                 | 36400                             | 48800         | 62500         | 78000                | 95500                    | 116000         | 128000             | 140000         | 154000          |                                                                  |
| A ensir                                                                                    | 6450<br>22.1                      | 6550<br>22.4  | 6550<br>22.5  | 6550<br>22.5         | 6600<br>22.5             | 6600<br>22.6   | 6650<br>22.6       |                | 6800<br>22.9    |                                                                  |
| Condensing<br>W<br>W<br>W<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | 485<br>5.7                        | 640<br>7.5    | 805<br>9.5    | 990<br>11.8          | 1200<br>14.5             | 1440<br>17.6   | 1580<br>19.2       | 1720<br>20.9   | 1880<br>22.7    |                                                                  |
| 90 (273) C                                                                                 | 54<br>40200                       | 61.8<br>52500 | 67.6<br>66500 | 71.6<br>82500        | 73.7                     | 73.2<br>123000 | 71.9<br>135000     | 69.7<br>148000 | 66.7<br>162000  |                                                                  |
| Ρ                                                                                          | 5700                              | 5750          | 5800          | 5800                 | 5800                     | 5850           | 5900               | 6000           | 6100            |                                                                  |
| A<br>M                                                                                     | 20.7<br>505                       | 20.9<br>655   | 21<br>815     | 21<br>1000           | 21<br>1210               | 21.1<br>1450   | 21.2<br>1590       |                | 21.5<br>1890    |                                                                  |
| E                                                                                          | 7.1<br>58.9                       | 9.1<br>65.4   | 11.5<br>69.9  | 14.2<br>72.4         | 17.3<br>72.6             | 20.9<br>69.9   | 22.8<br>67.2       | 24.7<br>63.5   | 26.7<br>58.9    |                                                                  |
| 80 (235) C                                                                                 | 43800<br>5000                     | 56000<br>5050 | 70500<br>5100 | 87000<br>5100        | 106000<br>5150           | 129000<br>5200 | 142000<br>5250     | 156000<br>5350 | 171000<br>5450  |                                                                  |
| A                                                                                          | 19.6                              | 19.7          | 19.7          | 19.7                 | 19.8                     | 19.9           | 20                 | 20.1           | 20.3            |                                                                  |
| M                                                                                          | 525<br>8.7                        | 665<br>11.1   | 825<br>13.8   | 1000<br>17           | 1210<br>20.7             | 1460<br>24.8   | 1590<br>26.9       | 29.2           | 1900<br>31.4    |                                                                  |
| L<br>C:Consoity                                                                            | 62.8                              | 68<br>Power(W |               | 71.9                 | 69.8<br>ns) M·Ma         |                | 59.9<br>se/br) E:E |                | 47.9            | lsentropic Efficiency(%)                                         |

## Benefits of Emerson's Electronic Valve Gate Port Design

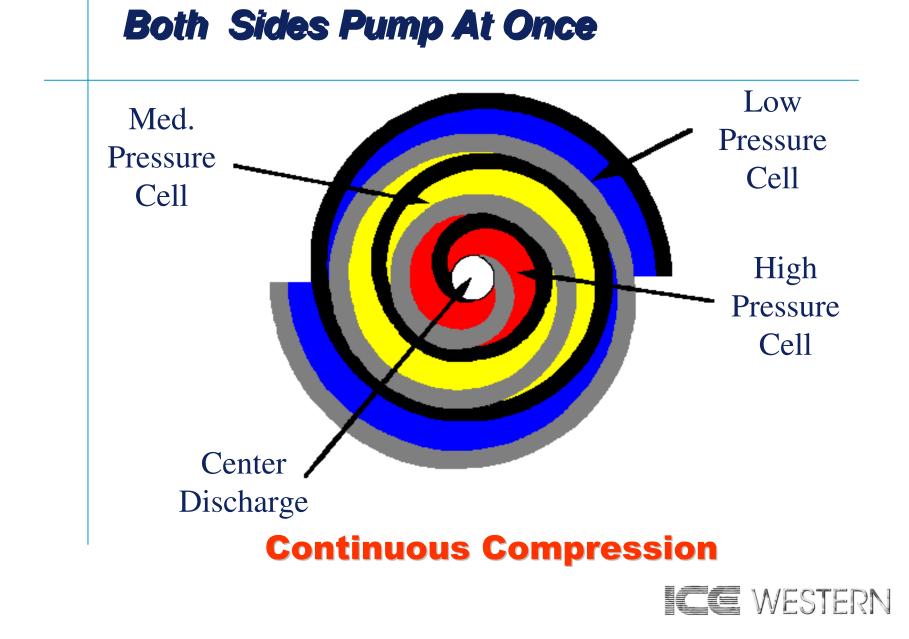



## EXV vs TXV, port design

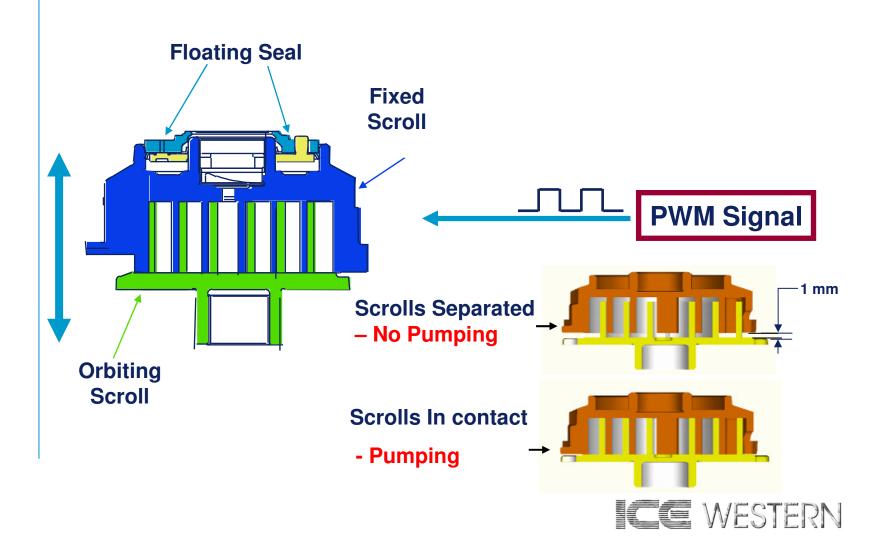





# *"EX" port design (100% down to 10% Range)*

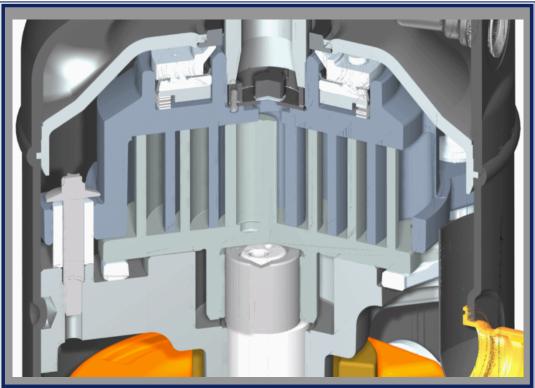






## **Scroll Compressor - Construction**

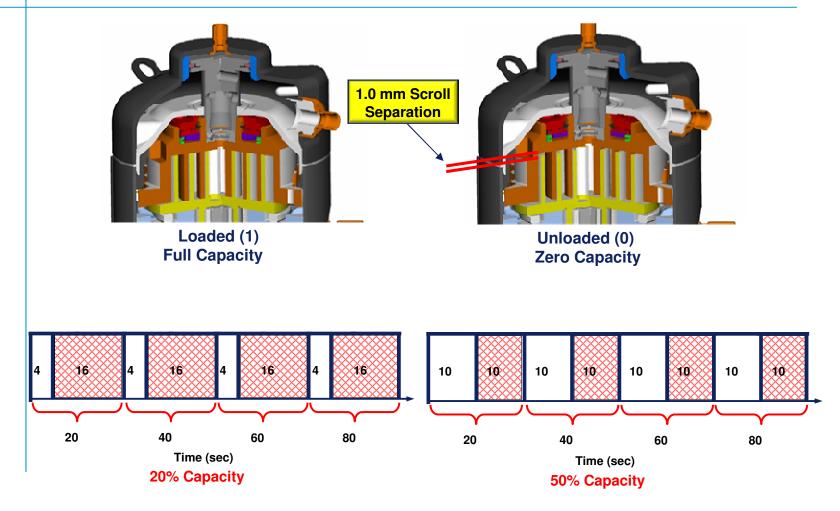






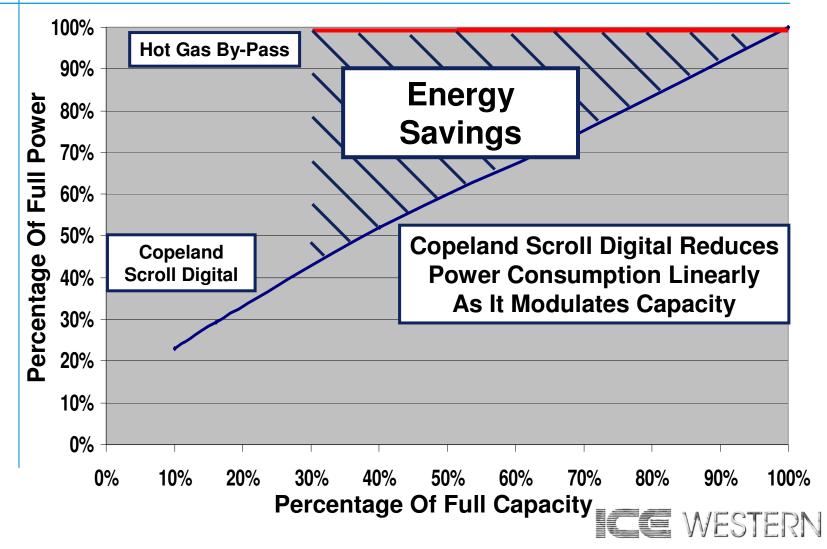

## **Digital Scroll Movement During Operation**




## **Copeland Scroll Digital**<sup>TM</sup> How It Works - Animation







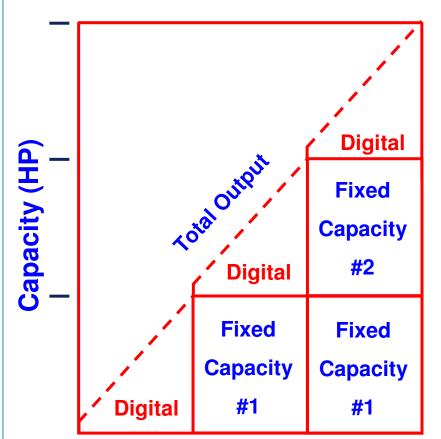

## Copeland Scroll<sup>™</sup> Digital Compressor Operation





## Copeland Scroll Digital<sup>™</sup> Power Savings




# In Multiple Compressor Applications







## **Digital Modulation Over Larger Capacities**

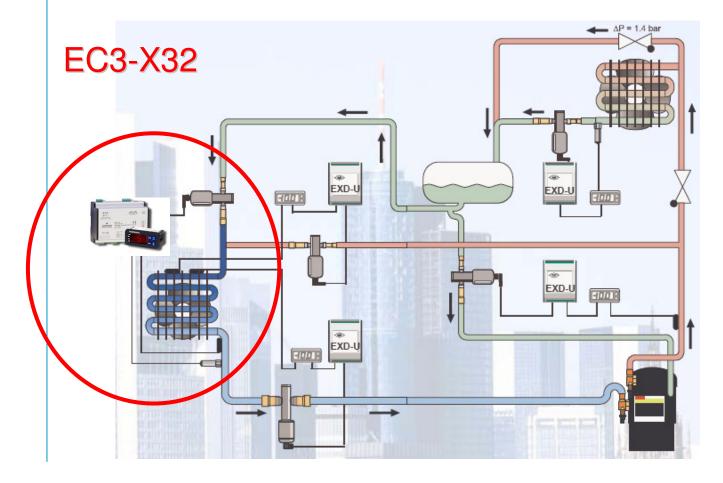


- Digital Can Be Used In Parallel With Fixed Capacity Scrolls To Get Even Wider Range Of Capacities
- Power Savings Still Follow The Same Line
- Leverages The Cost And Capability Of One Digital Over Larger Systems



## Digital Scroll Offers Superior Part-Load Efficiency Versus Hot Gas By-Pass

| % Full<br>Capacity               | Hot Gas<br>By-Pass<br>EER                          | Digital<br>Scroll<br>EER | IPLV<br>Weighting |               | 8.8                 |  |  |  |  |
|----------------------------------|----------------------------------------------------|--------------------------|-------------------|---------------|---------------------|--|--|--|--|
|                                  |                                                    |                          |                   | 6.7           |                     |  |  |  |  |
| 25%                              | 2.9                                                | 6.3                      | 12%               |               |                     |  |  |  |  |
| 50%                              | 5.7                                                | 8.2                      | 45%               |               |                     |  |  |  |  |
| 75%                              | 8.6                                                | 10.0                     | 42%               |               |                     |  |  |  |  |
| 100%                             | 11.5                                               | 11.3                     | 1%                | Part-Load Eff | iciency (IPLV)      |  |  |  |  |
| Integrated<br>Part Load<br>Value | 6.7                                                | 8.8                      | 100%              |               | ss ■ Digital Scroll |  |  |  |  |
| 30% Par                          | 30% Part-Load Efficiency Improvement With Copeland |                          |                   |               |                     |  |  |  |  |


Scroll Digital!

# **Digital Advantage**

- Precise Control Of Suction Pressure And Temperature
  - Minimum Temperature Fluctuation
  - More Consistent operation of mechanical valves and regulators
- Reduced Cycling Of Compressors
  - Longer Contactor Life
  - Longer Compressor Life
  - Reduction in Inrush Current
- System Efficiency Improvement
  - Eliminates Over/Under Shooting Of Suction Pressure Set Point
  - Potential To Run System At Higher Suction Pressure Set Point



## **Stand Alone Superheat Controller**

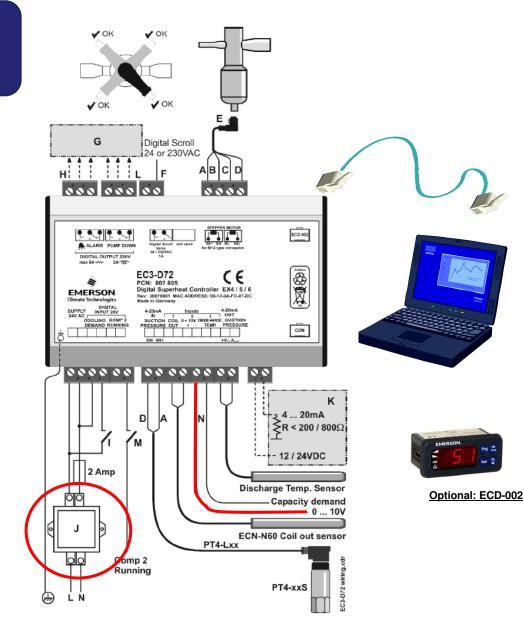




#### **EC3-D72** Superheat and Digital Synchronization Controller

#### Option 1

Direct connection to an individual PC

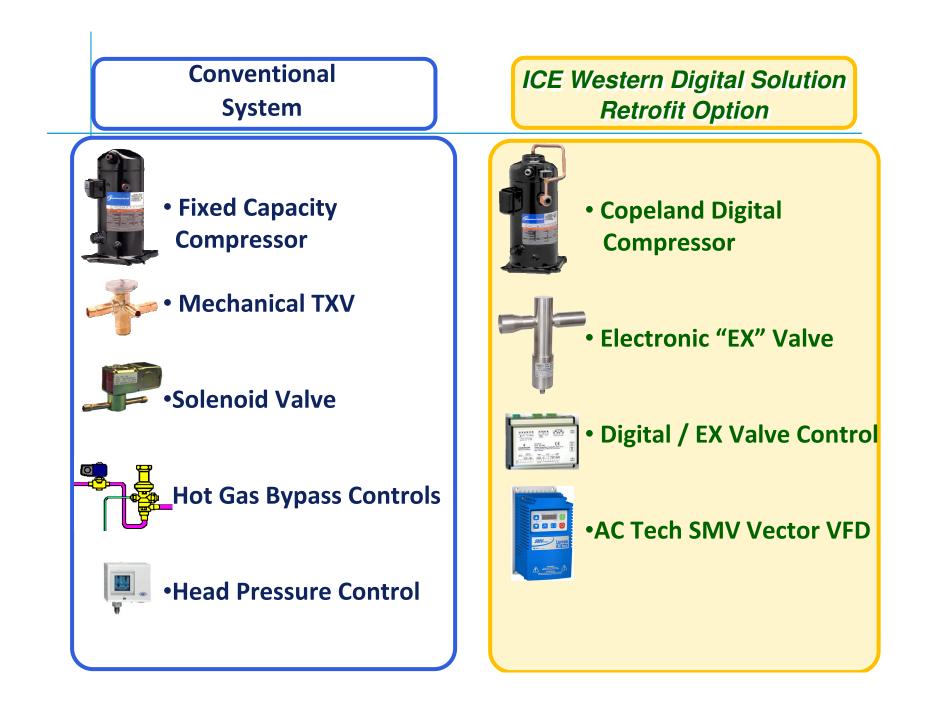

- It requires "cross over/link" cable
- Configuration of TCP/IP of PC
  - TCP/IP Network knowledge required

#### **Option 2**

Router with DHCP-Server Automatically assign dynamic IP-address for PC and EC3-X32



Router




# EC3 and EX Valves

Superheat Controller and Electronic Valve

- **Benefits:** 
  - 1. Precise Temperature Control
    - 10 to 100% Capacity Modulation
  - 2. Saves Energy / Operating Cost
    - Quicker Pull Down, Without Adjustments
    - Reaches Set Point Faster
    - Reduces Run Time
    - Tighter Superheat Control
  - 3. System Protection
    - Prevents Compressor Flood Back from Burnt out Evaporator Fan Motor
    - Alarm Notification IE Low Superheat
  - 4. Simplifies System with Added Flexibility
    - Reduces Commissioning Time / Labor Cost
    - Lower Refrigerant Charge Due to Low Floating Head





## Who Benefits From ICE Western Scroll Digital Solution?

#### • Applications That See Large Daily Temperature Swings







Schools

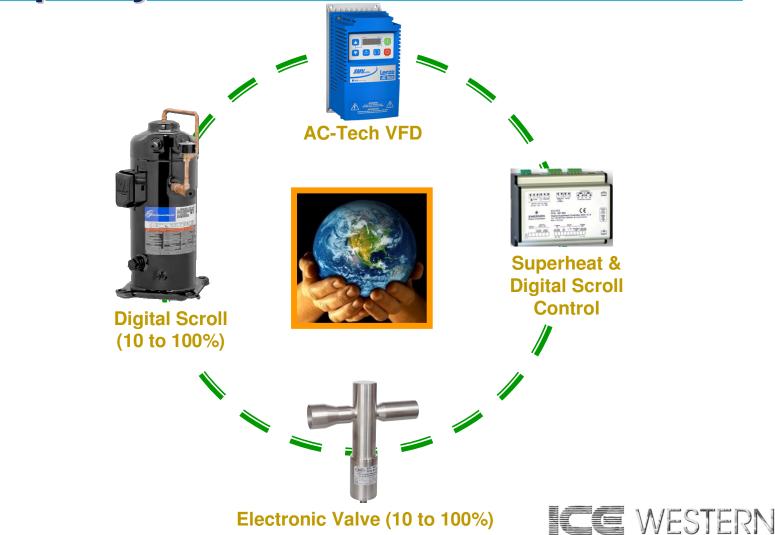
Restaurants

#### **Natatoriums**

### •Applications With Tight Temperature/Humidity Control Requirements



**Hospitals** 




**Museums** 





# ICE Western's Capacity Modulation Solution



